Presentation at 2013 World Bank Conference on Equity & Commitment to Equity in Fiscal Policy

The World Bank, Washington D.C. June 10, 2013

Jacob Ricker-Gilbert

Assistant Professor

Agricultural Economics

Purdue University

What is best practice in identifying economic incidence of input subsidies (fertilizer/seed)? In what context?

- Large scale up of input subsidies in Africa since 2006
- 7 countries spending US \$2billion in 2012
- Most are "targeted" programs
 - Distribution not random
 - Makes evaluation difficult
- Nation-wide programs
 - Malawi 60-70% of households participate
 - Potentially large "spill-over" effects

$$Y_{it} = f(Z_{it}, X_{it}, E_{it})$$

Is **Z** number of vouchers, kilograms of subsidized fertilizer purchased, kilograms of subsidized fertilizer applied to maize?

- If number of vouchers, (eligibility effect)
 - how to account for resale and sharing of fertilizer?
- If kilograms of subsidized fertilizer (participation effect)
 - Is that really measuring the effect of the gov't program?

Since vouchers and fertilizer not distributed randomly, how to control for potential correlation between \mathbf{Z}_{it} and \mathbf{E}_{it} ?

$$Y_{it} = f(Z_{it}, X_{it}, E_{it})$$

- Advantage if household panel data available.
 - Use household fixed effects or first differencing to deal with time-constant unobservable factors.
- IV estimation: challenge of finding a good instrument.
 - Modeling subsidized seed and fertilizer = multiple instruments
- Potential RCT: Z = voucher eligibility IV for fertilizer acquisition: Local Average Treatment Effects (LATE)
 - Are you studying a population of interest?
 - External validity?

Returns to maize production from additional kg of subsidized fertilizer in Malawi

FD	Panel Quantile Regression
	`

Covariates ¹	Cond. mean est.	10%tile	25%tile	50%tile	75%tile	90%tile
Kg sub. fertilizer	2.71***	0.86***	1.50***	2.28***	3.52***	5.00***

- Returns to subsidized fertilizer are small but positive and statistically significant
- Returns higher at the top of maize production distribution than at bottom
 - mean return higher than median return
- People at bottom poorer, lower management ability and worse soil fertility.

Note: *, **, *** indicates that corresponding coefficients are significant at the 10%, 5%, and 1% level respectively; other controls included in model

How should different types of ag. subsidies be modeled given the general lack of data in surveys on which farmers are benefiting from these programs?

- National production estimates may be politicized
- Household-level data likely more objective and accurate (still could be subject to measurement error)
- Gates foundation funded, World Bank implemented LSMS surveys providing a great deal of useful information.

What options are available to take into account behavioral response and general equilibrium effects?

- Large scale program, could have "spill-over" effects. BENEFITS
 - 1) lower maize prices
 - evidence suggest small downward effects
 - 2) higher wage rates
 - evidence suggests small upward effects

COSTS

- 3) leakages
 - evidence suggests may be quite large
- 4) crowding out
 - evidence suggest may be significant

Thank you for your time!

jrickerg@purdue.edu