"Gone with the Storm: Rainfall Shocks and Household Wellbeing in Guatemala"

Javier E. Baez Maria E. Genoni Leonardo Lucchetti Mateo Salazar

Washington D.C. September 4, 2014

This paper

- Exploits the occurrence of a natural shock, Tropical Storm Agatha (2010), which brought to Guatemala the largest rainfall since 1963, to identify its short- & medium-term impacts on
 - Household well-being (consumption, poverty indicators)
 - Children's human capital (school enrollment and health)
 - Labor force supply responses (adults and children)
- Carries out sub-group analysis to understand factors that raise resilience and attempts to disentangle some of the mechanisms
- Seeks to derive policy lessons to strengthen disaster and risk management strategies to protect vulnerable populations

How?

• It employs a standard double-difference analysis

$$Y_{imt} = \alpha_m + 2011_t + \beta Storm_{mt} + X_{imt} '\gamma + \varepsilon_{imt}$$

- Using cross-sectional LSMS data from 2006 (pre-shock) and 2011 (post-shock)
- Exploits quasi-exogenous variation in the intensity of the shock (monthly and daily rainfall data from 73 weather stations
- And performs a number of placebo tests on two control groups

Defining rainfall shocks

A station, i.e. matched municipality, heavily affected if rainfall • recorded in May of 2010 is at least two standard deviations above its historical mean

Montufar station: Affected

2010

Source: INSIVUMEH and World Bank.

The raw DD shows a fall in consumption among affected households

Consumption per-capita distribution and changes for control and treatment groups (2006 and 2011)

Source: LSMS 2006 and 2011 and World Bank calculations

Conditional DD models confirm that consumption fell, mostly in urban areas

• Overall consumption fell by 5.5% among affected households, 12% among urban households

Impact estimates of the effect of Agatha on household per capita consumption

Note: Parameter estimates of the effect of the shock on household consumption per capita from diff-in-diff models. Results in Panel A derived from a binary definition of the treatment while results from Panel B use a treatment intensity specification. Robust standard errors clustered at the municipality level. Estimates significant at 90(*), 95(**), 99(***) percent confidence

The fall in consumption pushed some affected households back into poverty

• The shock increased poverty by 5.5 percentage points (18%) as well as the severity of poverty in urban areas

Note: Parameter estimates of the effect of the shock on household consumption per capita from diff-in-diff models. Results in Panel A derived from a binary definition of the treatment while results from Panel B use a treatment intensity specification. Robust standard errors clustered at the municipality level. Estimates significant at 90(*), 95(**), 99(***) percent confidence

Key dimensions of household welfare negatively affected

• One year after the shock: (i) food and education expenditures10-13% lower, (ii) consumption of durable goods fell by 80%

	Food	Health	Education	Durables
National	(1)	(2)	(3)	(4)
t * (rainfall z-score> 2)	-16.054	0.828	-5.821**	-16.554*
	[10.956]	[2.683]	[2.559]	[9.231]
Observations	$26,\!587$	26,587	26,587	26,587
Baseline Mean	348.3	20.99	38.73	45.97
Urban				
t * (rainfall z-score> 2)	-40.622**	-5.967	-8.830*	- 51.447***
	[16.306]	[4.775]	[5.094]	[16.087]
Observations	11,225	11,225	11,225	11,225
Baseline Mean	410.4	25.77	60.25	66.85
Rural				
t * (rainfall z-score> 2)	7.954	5.190*	-2.860	-3.366
	[14.200]	[2.986]	[2.292]	[8.1 <i>35</i>]
Observations	15,362	15,362	15,362	15,362
Baseline Mean	302.4	17.46	22.87	30.58

Conclusions

- Robust evidence suggests that Agatha led to a sizable –and possibly persistent– deterioration of human welfare among affected households
- Similar impacts widely documented in the literature but those triggered by excessive rainfall often concentrated in rural areas
- This paper shows that urban areas are as vulnerable
- Agatha could be responsible for up to 20% of the <u>increase in</u> <u>poverty between 2006 and 2011</u> –often attributed solely to the effects of the global and food price crises.

Poverty headcount in Guatemala

Poverty headcount in Guatemala (2000, 2006 and 2011)

Return