Implications of Food Price Shocks for Poverty in 2030

Tomas Darmo, Maros Ivanic and Tess Lallemant

Climate Change and Poverty Conference

February 9, 2015
Motivation

- Food prices expected to rise in the next 15 years
 - On average between 26–63 percent depending on the scenario
- Climate change a factor in rising food prices
 - Conventional development scenario (SSP5): 60 percent of countries experience larger food prices because of climate change
 - Unequal development scenario (SSP4): over 60 percent of countries experience lower food price increases
- The poor can be negatively affected by sudden increases in food prices
 - Sudden increase in food prices in 2008 increases global poverty by over 100 million (Ivanic and Martin, 2008)
- How vulnerable will the poor be to food price shocks in 15 years?
 - The number of poor may differ
 - Their food consumption shares may change
 - The number of net food sellers may also change
 - What is the likely role of climate change in this?
Overview of the method

- Evaluate the sources of incomes and patterns of expenditure of households at the present time for a number of developing countries
 - Focus on food consumption and production
 - Use household surveys that describe households’ total consumption and food production
 - Currently ten countries are included: Albania, Ghana, Iraq, Liberia, Moldova, Niger, Senegal, Sierra Leone, Tajikistan and Vietnam
- Fast-forward household surveys into 2030
 - Alter households’ incomes and population weights to match two growth scenarios—a high-growth (SSP5) and low-growth (SSP4) one
 - Apply food price changes depending on presence of absence of climate change
- Measure the vulnerability of extreme poverty to food price shocks
 - Simulate a 100-percent food price shock under all scenarios
 - Consider changes in poverty rates by strata
Currently 10 countries included
- Recent surveys from 2005–2012 (average age 5.5 years)
- Our vision is to expand to 30+ countries
Scenario sources

- **Population Growth**
 - Projections from World Bank’s Health Nutrition and Population Statistics for urban and rural population growth

- **Economic Growth**
 - Two projections from the International Institute for Applied System Analysis’ SSP database
 - Conventional development (SSP5): low socio-economic challenges for adaption, high socio-economic challenges for mitigation
 - Unequal development (SSP4): high socio-economic challenges for adaption, low socio-economic challenges for mitigation

- **Food price changes**
 - Two sets of projections of food price changes from Potsdam Institute for Climate Impact Research (PIK) that explore scenarios based on possible climate change outcomes
 - No impact of climate change
 - Full impact of climate change
Scenario descriptions—our sample statistics

- **Population growth**
 - Total Population Growth of 34 percent (2.0 percent/year)
 - Rural Population Growth of 18 percent (1.1 percent/year)
 - Urban Population Growth of 58 percent (3.0 percent/year)

- **Economic growth**
 - High growth—174 percent (6.9 percent/year)
 - Low growth—153 percent (5.2 percent/year)

- **Food Price Change**
 - High growth
 - without climate change—31 percent increase (1.8 annually)
 - with climate change—29 percent increase (1.7 annually)
 - Low growth
 - without climate change—77 percent increase (3.8 annually)
 - with climate change—61 percent increase (3.2 annually)
Fast-forwarding of households to 2030

- Scale uniformly weights of households to match population growth and makeup
 - We currently consider urban and rural decomposition
 - In the future, we would like to bring additional characteristics to match better SSP4 and SSP5 scenarios
- Increase income of households based on the forecast
 - A uniform increase in household incomes and total expenditure after population adjustment
- Adjust household food consumption based on the change in incomes and food prices
 - Estimate income and own- and cross-price elasticities
 - CDE preferences
 - Parameter estimates from the GTAP database
 - Elasticities calibrated based on parameter estimates and observed consumption shares
Real growth between 130 and 190 percent by 2030
Modest population growth at 9 percent
 - Reduction in rural population by 7 percent
 - Increase in urban population by 39 percent
Likely improved the standards of living of most people
Change in income distribution in Niger

- High economic growth between 130 and 220 percent
- Large population growth of 80 percent
 - Rapid increase in poorer rural population (70 percent)
 - Increase in urban population by over 130 percent likely to squeeze incomes of rural population
- Many worse off within low economic growth scenario

Tomas Darmo, Maros Ivanic and Tess Lallemant

Implications of Food Price Shocks for Poverty in 2030
Extreme increases in food prices between 40 and 320 percent

- Interestingly, food prices increase less with climate change in Vietnam

Consumption shares likely higher despite higher incomes

- Number of net food sellers likely to be affected
Generally higher food consumption shares for most households

- The only exception: poorest households in high-growth scenario
Implication of scenarios for poverty rates

<table>
<thead>
<tr>
<th>Stratum</th>
<th>Baseline level</th>
<th>High-growth</th>
<th>Low-growth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total population</td>
<td>29.1%</td>
<td>12.6%</td>
<td>18.7%</td>
</tr>
<tr>
<td>Farmer headed</td>
<td>31.3%</td>
<td>14.1%</td>
<td>20.5%</td>
</tr>
<tr>
<td>Female headed</td>
<td>15.9%</td>
<td>1.2%</td>
<td>11.7%</td>
</tr>
<tr>
<td>Male headed</td>
<td>29.2%</td>
<td>12.6%</td>
<td>18.8%</td>
</tr>
<tr>
<td>Non-farmer headed</td>
<td>24.4%</td>
<td>10.8%</td>
<td>14.8%</td>
</tr>
<tr>
<td>Rural</td>
<td>28.6%</td>
<td>5.6%</td>
<td>14.5%</td>
</tr>
<tr>
<td>Urban</td>
<td>19.1%</td>
<td>10.3%</td>
<td>12.9%</td>
</tr>
</tbody>
</table>

Table: Average extreme poverty headcount levels

- Both scenarios likely to reduce extreme global poverty
- More substantial poverty reduction with higher growth
Assessment of resilience of extreme poverty to food price shocks

- We simulate a 100-percent food price shock and measure its poverty impact
 - Each country faces the same food price shock similar to one observed in 2008
 - All other prices assumed to remain unchanged
- We assume a short-run closure
 - No time for producers to respond
 - No time for wages to adjust
We use the basic Deaton (1989) framework for assessing households’ welfare.

- Net welfare change depends on the net selling position of the household and price changes.
- We add substitution on the side of consumption.
- Households follow the CDE preference structure with estimates from the GTAP database.

\[
\hat{W}_h = \hat{p}'s_h + \frac{1}{2}\hat{p}'\epsilon\hat{p}s_h + \hat{p}'q_h + \frac{1}{2}\hat{p}'\mu\hat{p}q_h
\]

- \(s_h\) — household-specific vector of consumption shares,
- \(q_h\) — household-specific vector of production shares (of total expenditure),
- \(p\) — a country-specific vector of price changes.

We ignore production adjustment and wage rate changes.

- Interested in short-run impacts of future food price shocks.
- Based on the present poverty lines (PovCalNet), determine which households are in poverty after the shock.
Implication of scenarios for poverty rates

<table>
<thead>
<tr>
<th>Stratum</th>
<th>Baseline level</th>
<th>High-growth w/o climate change</th>
<th>High-growth w/o climate change</th>
<th>Low-growth w/o climate change</th>
<th>Low-growth w/o climate change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total population</td>
<td>24.5%</td>
<td>19.2%</td>
<td>18.9%</td>
<td>21.9%</td>
<td>22.8%</td>
</tr>
<tr>
<td>Farmer headed</td>
<td>20.9%</td>
<td>16.5%</td>
<td>16.2%</td>
<td>17.3%</td>
<td>18.6%</td>
</tr>
<tr>
<td>Female headed</td>
<td>31.5%</td>
<td>29.1%</td>
<td>28.4%</td>
<td>24.3%</td>
<td>27.3%</td>
</tr>
<tr>
<td>Male headed</td>
<td>24.0%</td>
<td>18.6%</td>
<td>18.3%</td>
<td>21.2%</td>
<td>22.1%</td>
</tr>
<tr>
<td>Non-farmer headed</td>
<td>27.2%</td>
<td>20.2%</td>
<td>20.1%</td>
<td>26.0%</td>
<td>26.5%</td>
</tr>
<tr>
<td>Rural</td>
<td>25.6%</td>
<td>24.0%</td>
<td>23.8%</td>
<td>24.4%</td>
<td>25.7%</td>
</tr>
<tr>
<td>Urban</td>
<td>26.8%</td>
<td>17.6%</td>
<td>17.4%</td>
<td>24.6%</td>
<td>24.7%</td>
</tr>
</tbody>
</table>

Table: Average changes in extreme poverty headcount following a 100-percent food price shock

- Poverty impact of a 100-percent food price shock declines in all scenarios
 - Largest decline among urban households under the high growth scenario
Conclusions

- Projected growth rate is the major driving force in global reduction of extreme poverty
 - Even though high-growth scenario is likely to improve the outcomes more, the low-growth scenario is still very favorable to extreme poverty
- Resilience to sudden food price shocks does not decline as much as poverty rates do
 - Food consumption shares increase, making households more susceptible to food price changes despite smaller poverty headcount
- Climate change alone appears to be less important for sensitivity to food prices
 - Resilience to food price shocks is not greatly affected
 - However, in the pessimistic growth, avoiding climate change helps households noticeably
Directions for future research

- Some variability exists among the results among individual countries
 - Need to expand sample to the level of Ivanic and Martin (2014) to cover most of the world’s poverty
 - Establish confidence intervals around the results
- Better projections of household characteristics and distribution needed
 - We probably need to match more characteristics in addition to urban/rural population and income growth
 - Work underway to provide more elaborate projections
- Need to consider long-run impacts as well
 - Long-run poverty impacts of higher food prices appear opposite to short-run impacts
 - Does the conclusion change in 2030?