

# PROST-Pension Reform Options Simulation Toolkit

Tatyana Bogomolova, World Bank, HDNSP



# Why Modelling?

- Many factors have to be taken into account when assessing a real pension system, and its different reform options:
  - ✓ Demographic
  - ✓ Economic
  - ✓ Policy variables/pension system parameters
  - ✓ Individuals behavior
- Pension system analysis requires long-term projections
- Useful tool in pension system diagnosis and evaluation of reform options; a tool to organize thinking about pension systems



# What is PROST?

- PROST computer-based toolkit to simulate pension systems over a long timeframe
- Created to support World Bank pension policy dialogue in client countries
- User-friendly, input-output in Excel
- Regular updates with new features
- Individual country and cross-country studies (used in 90+ WB client countries and some cross-country studies)
- More details in "Modeling Pension Reform: The World Bank's Pension Reform Options Simulation Toolkit" (www.worldbank.org/pensions)



# **Key Features of PROST**

- Deterministic cohort-based model: models single year cohorts, tracks them down over time
- Projects coverage, contributions, entitlements, financial flows
- Allows to look at pension system as a whole as well as at individuals
- Addresses all main pension policy dimensions, all policy variables exogenous
- Generic, flexible, easily adapted to various country circumstances
- Modeling reforms relatively fast and easy



# **Input Data and Assumptions**

- Demography
  - Population
  - Fertility
  - Mortality
  - Migration
- Economy
  - Macroeconomy (GDP, inflation, interest rates)
  - Labor market (LFPR, unemployment)
- Pension system
  - Pension system data (number of contributors, pensioners, wages, initial pensions)
  - Pension policy
  - Behavior of pension system members (contribution density, retirement pattern)



# **Input Data: policy variables**

- PAYG, non-financial DC, fully funded DC
- Coverage
- Contribution rate, contribution ceiling
- Retirement age, early retirement
- Benefit formula in DB systems (accrual rate, max replacement rate, averaging period, valorization)
- Min, max pension
- Penalties for early retirement
- Pension commutation
- Pension indexation
- Notional interest rate
- Annuity factors

#### **General Calculation Scheme**





# **PROST** Output

- Demographic projections
  - Population
  - Life expectancy
  - Population dependency ratios
- Pension system demographics
  - Number of contributors
  - Number of pensioners (by pensioner category)
  - System dependency rate
  - Coverage rate
- Pension system finances (PAYG DB, NDC, FFDC)
  - Wages, entitlements
  - Pension system revenues, expenditures, current balance, assets/debt
  - Implicit pension debt in PAYG
  - Equilibrium contribution rate for PAYG DB
- Output for individuals (contributions, benefits, NPV, IRR)



# **Example: pension system diagnosis**

No Reform: System Dependency Rate (number of pensioners/number of contributors)



No Reform: System Finances, % of GDP



#### No Reform: Average Pension for Old Age Pensioners (% of average wage of contributors)





# **Example: impact of raising retirement age**





# **Example: individual perspective**

| Profile : input                   | No reform | Raising<br>retirement age | Contribution gaps<br>(age) |
|-----------------------------------|-----------|---------------------------|----------------------------|
| Gender                            | Male      | Male                      | 22                         |
| Starts Working at Age             | 18        | 18                        | 23                         |
| Plans to Retire at Age            | 60        | 65                        | 24                         |
| Mortality Multiplier              | 1         | 1                         | 25                         |
| Starting Wage as % of Cohort Avg. | 80%       | 80%                       | 26                         |
| Productivity Growth Multiplier    | 0.8       | 0.8                       | 34                         |

| Output                                                      | No reform | Raising<br>retirement age |
|-------------------------------------------------------------|-----------|---------------------------|
| Initial Replacement Rate in Terms of Average Wage           | 45.1%     | 45.9%                     |
| Initial Replacement Rate in Terms of Individual's Last Wage | 74.8%     | 85.8%                     |
| Replacement Rate at Death in Terms of Average Wage          | 45.1%     | 45.9%                     |
| Internal Rate of Return                                     | 5.5%      | 4.8%                      |
| Net Present Value of Being Covered in Terms of Average Wage | 1.2       | 0.6                       |



# **Pension System Diagnosis: policy questions**

- Financial sustainability of PAYG systems (financial flows, government liabilities, implicit pension debt, financing gap)
- Adequacy of expected benefits (at retirement, postretirement, by pensioner category)
- Intra- and intergenerational distributional effects and equity issues



# Assessment of Pension Reform Options with PROST

- Impact of reforms on pension system finances and benefits, transition costs
- Types of pension reform
  - > PAYG "parametric" reforms (changing contribution rates, retirement age, benefit formula, indexation, etc.)
  - Systemic reforms (fully funded DC, notional DC schemes, any combination of PAYG DB, FF DC and NDC)
- Different transition paths
  - Switching pattern
  - Accrued rights
- Allows to model on-going DC/multipillar schemes

