

Managing Wheat Price Volatility in India

Christophe Gouel, Madhur Gautam & Will Martin 18 September 2014

Food security in India

- Food security: top priority for policy makers
- Addressed through 3 pillars:
 - Availability: R&D, subsidized inputs (electricity, fertilizer, seeds, water, credit) and guaranteed prices.
 - Access: largest food schemes in the world
 - Targeted, quantity-constrained, releases of food to low income consumers
 - Set to expand under new Food Security Bill: 820 million people should receive subsidized food.
 - Stability: stable prices through active trade and storage policies.

Food security in India

- Comprehensive and reinforcing policy instruments:
 - Trade policies insulate domestic markets
 - MSP is defended by public procurement and stockpiling.
 - Public stocks used to supply the Public Distribution System.
 - Discretionary disposal of remaining stocks to stabilize prices.
- Problems:
 - Hinders development of a private marketing network
 - 60% of marketed surplus are procured.
 - Costly and ineffective:
 - Very high food subsidy bill (\$15 billion)
 - Households that are entitled can buy half of quota (Khera, 2011)
 - Grain stocks deteriorate inadequate facilities or held too long

India's wheat market

From importer to exporter

Stable Production

Stable domestic market

Grain stocks vs norms

Total Stock (Wheat + Rice) vis-à-vis Buffer Norms and Strategic Reserve (Lakh Tonnes, Jan 2000 - Aug 2014)

Questions

- What are the implications of current policies?
 For India and the world market
- Can a model identify better policies?
 What is the optimal mix of storage and trade policies?
- Can simple rules yield similar results?

Modeling India's Wheat Market

Key features

- 2-country stochastic rational-expectations partial equilibrium model
 - India (*i*) & the Rest of the World (*w*)
 - Production, consumption, storage & trade
- A social welfare function that penalizes deviations of prices from the steady state.
- Design of optimal policy under commitment and optimal simple rules.

Producers respond to expected prices: $\max \Pi_{t|t+1}^{r} = \delta E_t (P_{t+1}^{r} H_t^{r} \epsilon_{t+1}^{r}) - \Psi^{r} (H_t^{r}),$

where *H* planned output, δ discount factor, ϵ a random shock to output, Ψ the production cost function.

FOC:

$$\delta E_t(P_{t+1}^r \epsilon_{t+1}^r) = \Psi^{r'}(H_t^r).$$

Consumers respond to current prices:

$$D^{\mathrm{r}}(P_t^{\mathrm{r}}) \equiv d^r P_t^{\mathrm{r}\alpha^r},$$

where $d^r > 0$ is a scale parameter and $\alpha^r \ge 0$ is the demand elasticity.

Private storers arbitrage prices intertemporally $S_t^r \ge 0 \perp P_t^r + k^r - \delta E_t P_{t+1}^r \ge 0,$

where S^r is private stocks & k^r storage costs.

Trade based on spatial arbitrage opportunities $X_t^w \ge 0 \perp (P_t^w + \theta_{w,i}) T_t^M \ge P_t^i$ $X_t^i \ge 0 \perp P_t^i \ge (P_t^w - \theta_{i,w}) T_t^X$

with X^r exports from r, $\theta_{r,s}$ transport cost r to s, $T_t^X \& T_t^M$ the power of the export & import tax.

Availability (state variable) $A_t^r \equiv S_{t-1}^r + H_{t-1}^r \varepsilon_t^r.$

Market clearing

 $A_{t}^{r} + X_{t}^{s} = D^{r}(P_{t}^{r}) + S_{t}^{r} + X_{t}^{r}$ for $s \neq r$.

Core laissez-faire model

2 state variables, $\{A_t^r\}$, and eight response variables, $\{P_t^r, S_t^r, H_t^r, X_t^r\}$, for $r \in \{i, w\}$.

Welfare

<u>Welfare:</u> sum of surpluses + loss function.

$$w_{t}^{i} = \left[-d^{i} \frac{P_{t}^{i^{1+\alpha^{i}}}}{1+\alpha^{i}}\right] + \left[P_{t}^{i} \overline{H}_{t-1}^{i} \epsilon_{t}^{i} - a^{i} \overline{H}_{t}^{i} - \frac{b^{i} \overline{H}_{t}^{i^{2}}}{2}\right] + \left[P_{t}^{i} S_{t-1}^{i} - \left(k^{i} + P_{t}^{i}\right) S_{t}^{i}\right] - \left[Cost_{t}^{i}\right] \left[-\frac{\kappa}{2} \left(P_{t}^{i} - \overline{P}^{i}\right)^{2}\right]$$

Where *Cost* is the sum of public storage costs and trade policy costs; $\left[-\frac{K}{2}\left(P_t^i - \overline{P}^i\right)^2\right]$ represents the dislike of policy makers for price stability.

K value specified with $K = \gamma (R - \nu) D(\overline{P}) / \overline{P}$, where γ , $R \& \nu$ are values of the budget share, relative risk aversion & income elasticity (Turnovsky et al., 1980, *Econometrica*).

Unpacking current policies

Key policies

- Capture the essence of discretionary policies by modeling them as simple rules.
- Price-insulating policies
 - Used to insulate from changes in world prices

$$T_{t}^{M} = \alpha_{M} (P_{t}^{w} + \theta_{w,i})^{\beta} \qquad T_{t}^{X} = \alpha_{X} (P_{t}^{w} - \theta_{i,w})^{\beta}$$

- $1 + \beta$ is the level of price transmission

• Purchase to defend the Minimum support price: $\Delta S_t^{G+} \ge 0 \perp P_t^i - MSP \ge 0.$

- The MSP assumed to be equal to the steady-state price

Stockholding policy

- Releases to supply the PDS: $\Delta S_t^{G-} = \min(\Theta, S_t^G + \Delta S_t^{G+}).$
 - If stock levels are not enough, PDS is supplied by open-market purchases.
- When stocks exceeds the level $\bar{S}^{G} = 25$ million tons, they are exported (possibly with a subsidy) $X_{t}^{S^{G}} = \max\left(0, S_{t}^{G} + \Delta S_{t}^{G+} - \Delta S_{t}^{\frac{G}{t}} - \bar{S}^{G}\right).$
- Public stock level is an additional state variable: $S_t^G = S_{t-1}^G + \Delta S_{t-1}^{G+} - \Delta S_{t-1}^{G-} - X_{t-1}^{S^G}.$

Parameter Values

Parameter	Value
India's Demand Elasticity	-0.3
ROW Demand Elasticity	-0.12
Wheat budget share %	10
Supply Elasticity	0.2
Private Storage Cost per ton	\$22
Public Storage Cost per ton (source: FCI)	\$87
Trade Costs per ton	
- Import	\$65
-Export	\$35
Standard deviation of production shocks in India and in ROW %	3.5

Estimating trade insulation

- Neglecting trade costs and assuming trade: $P^i = \alpha P^{w^{1+\beta}}$.
- Prices likely cointegrated, so estimation in level would capture their long-run dynamics, not short-run price insulation.
- Estimate using an error-correction model

• $\beta = -0.76$.

Solution methods

- Rational expectations storage models do not have closed form solutions.
- The solution is approximated by numerical methods
 - Projection methods: grid of points on state variables on which the model has to hold exactly.

- Spline interpolation between grid points.

RECS solver (http://www.recs-solver.org/)

Impacts on welfare

	Laissez- faire	Trade policy	Storage policy	Both	
Δ Mean price%		-2.8	0.01	-3.3	
Price CV (%)	14.4	10.7	10.1	3.1	
Ave. Public storage	0	0	4.2	10.4	
Ave. Private storage	0.10	0.02	0	0	
RoW Price CV (%)	20.7	24.0	19.6	23.3	
Contributions to India's Welfare (% of consumption expense)					
Cons Surplus		2.4	-1.3	2.1	
Prod Surplus		-2.7	1.4	-2.2	
Storage cost		0.0	-2.2	-3.7	
Trade cost		0.08	0.0	0.13	
Reduction in volatility	0.4	0.3	0.7		
Total India welfare	0.2	-1.8	-3.0		

Impacts of optimal policies & optimal simple rules

Fully optimal Policies

- Identify an active policy to maximize welfare
 - Model chooses trade tax & public storage levels
 - State-contingent policies (depend on current availability in the 2 regions and on history of the states: policies under commitment).
 - Analyze for different degrees of preference for price stability
- Allow to identify the best policy options, but
 - Very complex policies
 - Policies are function of variables that are not observable (e.g., Lagrange multipliers).

Optimal simple rules

- Compare with Simple and potentially more tractable – rules for policy
 - Rules of public behavior with simple feedback between observables and interventions.
 - Optimal: rules' parameter are determined to maximize welfare
- Optimal Simple Rules:
 - Degree of Price insulation ($\beta < 0$: % of insulation)
 - Constant subsidy to private storage (ζ: % of physical storage costs)
 - Public storage costs too high; cannot justify a storage policy.
 - Provide incentives to more cost-effective private storers.

Key impacts, $R - \nu = 6$

	Laissez- faire	Optimal Policy	Simple Rules	Current Policies	
Δ Mean price%		-2.8	-2.3	-3.3	
Price CV %	14.4	4.8	8.5	3.1	
Average Storage	0.10	0.95	0.95	12.5	
RoW Price CV %	20.7	22.7	22.5	23.3	
Contributions to India's Welfare (% of consumption expense)					
Consumer Surplus		1.66	1.70	2.1	
Producer Surplus		-1.79	-1.84	-2.2	
Storage cost		-0.09	-0.12	-3.7	
Trade cost		0.11	0.17	0.13	
Reduction in volatility cost		0.57	0.49	0.7	
Total India welfare		0.46	0.40	-3.0	

Optimal policies vs simple rules

$R-\nu$	Share of total welfare achieved by optimal simple rules
0	77.8%
3	85.8%
6	86.3%
9	86.1%
12	85.7%

Optimal simple rules achieves less welfare gains when $R - \nu = 0$:

- Gains come from terms-of-trade manipulation.
- OSR are not designed for this.

Optimal simple rules as $R \uparrow$

	$R-\nu$					
Variables	0	3	6	9	12	
Price insulation (β)	-0.17	-0.41	-0.49	-0.53	-0.55	
Storage subsidy (ζ)	0.02	0.72	0.97	1.08	1.15	
∆ Mean price %	0.0	-1.2	-1.5	-1.6	-1.7	
Price CV (%)	12.8	9.9	8.5	7.8	7.2	
Ave Private Storage	0.1	0.5	1.0	1.3	1.7	
Contributions to India's Welfare (% of consumption expense)						
Consumer Surplus	0.64	1.53	1.70	1.77	1.80	
Producer Surplus	-0.72	-1.68	-1.84	-1.91	-1.94	
Storage cost	0.00	-0.05	-0.12	-0.17	-0.22	
Trade cost	0.10	0.16	0.17	0.18	0.18	
Reduction in volatility cost	0.00	0.21	0.49	0.79	1.10	
Total India welfare	0.02	0.17	0.40	0.66	0.92	

With high storage costs?

- Previous results based private storage costs.
- Optimal policies with current public costs (4x)?
 Annual cost of storage = 61% of steady-state price.
- Optimal simple rule implies negligible levels of stocks
 - Better to let annual stocks be carried out in the RoW and to use trade policy to stabilize domestic market.

Conclusions

- Current policies yield very stable domestic prices
 - But at very high costs & potential fiscal risks
 - Question whether costs commensurate with benefits
 - High cost of public storage a challenge
- Instruments appropriate but can be used more costeffectively
 - Adopt a more rules based policy
- Optimal policies could yield significant welfare gains
 With smaller increase in RoW price volatility
- Simple rules-based approaches may yield benefits almost as large as optimal policies
 - But would require trust with private storers

Thank you!

Error correction model

ADF test

Variable	Constant	Trend
Price		
India	-1.49 (1)	-0.73 (1)
US	-1.42 (2)	-3.15 (1)
Price		
differential		
India	-5.24*** (1)	-5.57*** (1)
US	-4.85*** (1)	-4.79*** (1)
Residual from cointegration eq.	-3.58** (1)	-4.00* (1)

Long-run equilibrium:

 $\ln P_t^i = \begin{array}{ccc} 0.138 & + & 0.996^{***} & \ln P_t^w \\ (0.525) & (0.092) \end{array}$, Ad j-R²: 0.73.

 $\begin{array}{ll} & \underline{ {\rm Error-correction\ model:}} \\ \Delta \ln P_t^i = & -0.021 & + & 0.244^{**} & \Delta \ln P_t^w \\ & (0.019) & (0.106) \\ & - & 0.145^* & EC_{t-1} \\ & (0.080) \end{array}$ Adj-R²: 0.11; DW: 2.21.

So $\beta = -0.76$.

Data:

- India: Annual producer prices from FAOSTAT, converted to US dollars.
- World: US prices (IMF)
- Converted to real terms using US CPI.

Separating instruments

	$R-\nu$					
Variables	0	3	6	9	12	
	Optimal trade policy (when $\zeta = 0$)					
Price insulation (β)	-0.17	-0.40	-0.48	-0.52	-0.56	
India price CV (%)	12.79	11.24	10.92	10.79	10.71	
RoW price CV (%)	21.40	22.40	22.75	22.95	23.13	
Optimal storage policy (when $\beta = 0$)						
Storage subsidy (ζ)	-0.09	0.49	0.73	0.85	0.93	
India price CV (%)	14.46	13.61	12.85	12.28	11.85	
RoW price CV (%)	20.72	20.56	20.41	20.27	20.16	