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8
The Concentration Index

Concentration curves can be used to identify whether socioeconomic inequality in 
some health sector variable exists and whether it is more pronounced at one point 
in time than another or in one country than another. But a concentration curve does 
not give a measure of the magnitude of inequality that can be compared conve-
niently across many time periods, countries, regions, or whatever may be chosen 
for comparison. The concentration index (Kakwani 1977, 1980), which is directly 
related to the concentration curve, does quantify the degree of socioeconomic-
related inequality in a health variable (Kakwani, Wagstaff, and van Doorslaer 1997; 
Wagstaff, van Doorslaer, and Paci 1989). It has been used, for example, to measure 
and to compare the degree of socioeconomic-related inequality in child mortal-
ity (Wagstaff 2000), child immunization (Gwatkin et al. 2003), child malnutrition 
(Wagstaff, van Doorslaer, and Watanabe 2003), adult health (van Doorslaer et al. 
1997), health subsidies (O’Donnell et al. 2007), and health care utilization (van 
Doorslaer et al. 2006). Many other applications are possible. 

In this chapter we defi ne the concentration index, comment on its properties, 
and identify the required measurement properties of health sector variables to 
which it can be applied. We also describe how to compute the concentration index 
and how to obtain a standard error for it, both for grouped data and for microdata. 

Defi nition and properties

Defi nition

The concentration index is defi ned with reference to the concentration curve, intro-
duced in chapter 7. The concentration index is defi ned as twice the area between 
the concentration curve and the line of equality (the 45-degree line). So, in the case 
in which there is no socioeconomic-related inequality, the concentration index is 
zero. The convention is that the index takes a negative value when the curve lies 
above the line of equality, indicating disproportionate concentration of the health 
variable among the poor, and a positive value when it lies below the line of equality. 
If the health variable is a “bad” such as ill health, a negative value of the concentra-
tion index means ill health is higher among the poor. 

Formally, the concentration index is defi ned as 

(8.1) 
  
C=1− 2 Lh p( )dp

0
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The index is bounded between –1 and 1. For a discrete living standards variable, it 
can be written as 

(8.2) 
  
C= 2

Nµ
hiri

i=1

n

∑ − 1− 1
N

,

where  hi is the health sector variable, µ  is its mean, and  ri = i N  is the fractional 
rank of individual i in the living standards distribution, with i = 1 for the poorest 
and i = N for the richest.1 For computation, a more convenient formula for the con-
centration index defi nes it in terms of the covariance between the health variable 
and the fractional rank in the living standards distribution (Jenkins 1988; Kakwani 
1980; Lerman and Yitzhaki 1989),

(8.3) C h r= ( )2
µ

cov , .

Note that the concentration index depends only on the relationship between 
the health variable and the rank of the living standards variable and not on the 
variation in the living standards variable itself. A change in the degree of income 
inequality need not affect the concentration index measure of income-related health 
inequality.

The concentration index summarizes information from the concentration curve 
and can do so only through the imposition of value judgments about the weight 
given to inequality at different points in the distribution. Alternative weighting 
schemes implying different judgments about attitudes to inequality are considered 
in the next chapter. Inevitably, the concentration index loses some of the information 
that is contained in the concentration curve. The index can be zero either because 
the concentration curve lies everywhere on top of the 45-degree line or because it 
crosses the line and the (weighted) areas above and below the line cancel out. It is 
obviously important to distinguish between such cases, and so the summary index 
should be examined in conjunction with the concentration curve. 

The sign of the concentration index indicates the direction of any relationship 
between the health variable and position in the living standards distribution, and 
its magnitude refl ects both the strength of the relationship and the degree of vari-
ability in the health variable. Although this is valuable information, one may also 
wish to place an intuitive interpretation on the value of the index. Koolman and 
van Doorslaer (2004) have shown that multiplying the value of the concentration 
index by 75 gives the percentage of the health variable that would need to be (lin-
early) redistributed from the richer half to the poorer half of the population (in the 
case that health inequality favors the rich) to arrive at a distribution with an index 
value of zero.

Properties

The properties of the concentration index depend on the measurement character-
istics of the variable of interest. Strictly, the concentration index is an appropri-
ate measure of socioeconomic-related health (care) inequality when health (care) 
is measured on a ratio scale with nonnegative values. The concentration index is 

1For large N, the fi nal term in equation 8.3 approaches zero and it is often omitted.
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invariant to multiplication of the health sector variable of interest by any scalar 
(Kakwani 1980). So, for example, if we are measuring inequality in payments for 
health care, it does not matter whether payments are measured in local currency 
or in dollars; the concentration index will be the same. Similarly, it does not mat-
ter whether health care is analyzed in terms of utilization per month or if monthly 
data are multiplied by 12 to give yearly fi gures. However, the concentration index 
is not invariant to any linear transformation of the variable of interest. Adding a 
constant to the variable will change the value of the concentration index. In many 
applications this does not matter because there is no reason to make an additive 
transformation of the variable of interest. There is one important application in 
which this does represent a limitation, however. We are often interested in inequal-
ity in a health variable that is not measured on a ratio scale. A ratio scale has a true 
zero, allowing statements such as “A has twice as much X as B.” That makes sense 
for dollars or height. But many aspects of health cannot be measured in this way. 
Measurement of health inequality often relies on self-reported indicators of health, 
such as those considered in chapter 5. A concentration index cannot be computed 
directly from such categorical data. Although the ordinal data can be transformed 
into some cardinal measure and a concentration index computed for this (van 
Doorslaer and Jones 2003; Wagstaff and van Doorslaer 1994), the value of the index 
will depend on the transformation chosen (Erreygers 2005).2 In cross-country com-
parisons, even if all countries adopt the same transformation, their ranking by the 
concentration index could be sensitive to differences in the means of health that are 
used in the transformation.

A partial solution to this problem would be to dichotomize the categorical 
health measure. For example, one could examine how the proportion of individuals 
reporting poor health varies with living standards. Unfortunately, this introduces 
another problem. Wagstaff (2005) has demonstrated that the bounds of the concen-
tration index for a dichotomous variable are not –1 and 1 but depend on the mean 
of the variable. For large samples, the lower bound is µ − 1 and the upper bound is 
1− µ . So the feasible interval of the index shrinks as the mean rises. One should be 
cautious, therefore, in using the concentration index to compare inequality in, for 
example, child mortality and immunization rates across countries with substantial 
differences in the means of these variables. An obvious response is to normalize 
the concentration index by dividing through by 1 minus the mean (Wagstaff 2005). 

If the health variable of interest takes negative as well as positive values, then its 
concentration index is not bounded within the range of (–1,1). In the extreme, if the 
mean of the variable were 0, the concentration index would not be defi ned. 

Bleichrodt and van Doorslaer (2006) have derived the conditions that must 
hold for the concentration index (and related measures) to be a measure of socio-
economic-related health inequality consistent with a social welfare function. They 
argue that one condition—the principle of income-related health transfers—is 
rather restrictive. Erreygers (2006) has derived an alternative measure of socioeco-
nomic-related health inequality that is consistent with this condition and three oth-
ers argued to be desirable. 

2Erreygers (2005) suggests a couple of alternatives to the concentration index to deal with 
this problem.
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Estimation and inference for grouped data 

Point estimate of the concentration index

The concentration index for t=1,…,T groups is easily computed in a spreadsheet 
program using the following formula (Fuller and Lury 1977): 

(8.4)   C = p1L2 − p2L1( )+ p2L3 − p3L2( )+ ...+ pT −1LT − pT LT −1( )
where pt is the cumulative percentage of the sample ranked by economic status in 
group t, and Lt is the corresponding concentration curve ordinate. To illustrate, con-
sider the distribution of under-fi ve mortality by wealth quintiles in India, 1982–92. 
We drew the concentration curve for these data in chapter 7. Table 8.1 reproduces 
table 7.1 with the terms in brackets in the formula above added to the fi nal column. 
The sum of these terms is –0.1694, which is the concentration index. The negative 
concentration index refl ects the higher mortality rates among poorer children. 

Standard error 

A standard error of the estimator of C in the grouped data case can be computed using 
a formula given in Kakwani, Wagstaff, and van Doorslaer (1997). Let ft be the propor-
tion of the sample in the tth group, and defi ne the fractional rank of group t by 

(8.5) R f ft k t
k
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which is the cumulative proportion of the population up to the midpoint of each 
group interval. The variance of the estimator of C is given by
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where n is the sample size, σ t
2 is the variance of the health variable in the tth group,  

µ is its mean, 
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(Kakwani, Wagstaff, and van 
Doorslaer 1997).

Table 8.1 Under-Five Deaths in India, 1982–92

 Wealth  No. of  Rel %  Cumul %  U5MR  No. of  Rel %  Cumul %  Conc. 
 group  births  births  births  per 1,000  deaths  deaths  deaths  index 

Poorest  29,939  23 23 154.7  4,632  30 30  –0.0008 

2nd  28,776  22  45 152.9  4,400  29  59  –0.0267 

Middle  26,528  20 66 119.5  3,170  21  79  –0.0592 

4th  24,689  19 85 86.9  2,145  14  93  –0.0827 

Richest  19,739  15 100  54.3  1,072  7 100  0.0000 

Total/average  129,671    118.8  15,419    –0.1694

Source: Authors. 
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Case in which within-group variances are unknown In many applica-
tions, the within-group variances will be unknown. For example, the data might 
have been obtained from published tabulations by income quintile. In such cases, 
it must be assumed that there is no within-group variance and the second term in 
equation 8.6 is set to zero. However, in addition, n needs to be replaced by T in the 
denominator of the fi rst term because there are in effect only T observations, not n. 

Table 8.2 gives an example using data on under-fi ve mortality (rates per birth, 
not rates per 1,000 births) from the 1998 Vietnam Living Standards Survey (VLSS). 
The data were computed directly from the survey, with children being grouped 
into household per capita consumption quintiles. The assumption made in table 8.2 
is that the within-group variances in mortality are not known and are set to zero. 
Below, we relax this assumption. The table, which is extracted from an Excel fi le, 
shows the values for each quintile of R, q, a, and fa2 computed by substituting esti-
mates for the parameters in the formula above. Also shown is the sum of fa2 across 
the fi ve quintiles. Substituting Σ f·a2 = 0.680, C = –0.1841, and T = 5 into equation 8.6 
gives 0.0029 for the variance of the estimate of C and hence a standard error equal 
to 0.0537. The t-statistic for C is therefore –3.43. 

Case in which within-group variances are known In some cases, the 
within-group variances will be known, and this provides us with more informa-
tion. In effect, we move from having information only on the T group means to 
having information on the full sample—albeit with the variation within the groups 
being picked up only by the group standard deviations. One such scenario is the 
case in which we are working with mortality data—the rates are defi ned at the 
group level only, but the within-group standard deviations are reported.3

In such cases, n is used (rather than T) in the denominator of the fi rst term in 
equation 8.6, and the second term needs to be computed as well. Table 8.3 shows the 
standard errors for each quintile’s under-fi ve mortality rate from the Vietnam data. 
The fi nal column shows the value for each quintile of the term in the summation 
operator in the second term of equation 8.6, as well as the sum of these across the 
fi ve quintiles. Dividing this sum through by nµ2 gives 1.511e-6, which is the second 
term of equation 8.6. Dividing Σ fa2 through by n (=5,315) gives 2.717e-6, which is 

Table 8.2 Under-Five Deaths in Vietnam, 1989–98 (within-group variance unknown)

Consumption  No. of  Cumul %    Cumul % 
 group  births  births  R  U5MR  deaths  CI  q  a  f · a2 

Poorest  1,002  19  0.094  0.060  31 –0.024  0.312  0.648  0.079 

2nd   949  37 0.278  0.034  48  –0.013  0.482  0.959  0.164 

Middle  1,002  56 0.461  0.041  69  –0.053  0.695  0.944  0.168 

4th   1,082  76 0.657  0.028  85  –0.095  0.854  0.842  0.144 

Richest  1,280  100 0.880  0.022  100  0.000  1.000  0.719  0.124 

Total/average  5,315    0.036   –0.184    0.680

Source: Authors.

3Or the standard errors of the group means are reported, from which estimates of the vari-
ances can be recovered provided group sizes are known.
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the fi rst term in equation 8.6. The sum of the two terms is the variance, equal in this 
case to 4.228e-6, giving a standard error of the estimate of C equal to 0.0021. This, 
unsurprisingly, is substantially smaller than the standard error obtained assuming 
no within-group variance. 

Estimation and inference for microdata

Point estimate of the concentration index

The concentration index (C) can be computed very easily from microdata by 
using the “convenient covariance” formula (equation 8.3). If the sample is not self-
weighted, weights should be applied in computation of the covariance, the mean of 
the health variable, and the fractional rank. Given the relationship between cova-
riance and ordinary least squares (OLS) regression, an equivalent estimate of the 
concentration index can be obtained from a “convenient regression” of a transfor-
mation of the health variable of interest on the fractional rank in the living stan-
dards distribution (Kakwani, Wagstaff, and van Doorslaer 1997). Specifi cally,

(8.7) 2 2σ
µ

α β εr
i

i i
h

r
⎛
⎝⎜

⎞
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= + + ,

where σ r
2  is the variance of the fractional rank. The OLS estimate of β is an esti-

mate of the concentration index equivalent to that obtained from equation 8.3. This 
method gives rise to an alternative interpretation of the concentration index as the 
slope of a line passing through the heads of a parade of people, ranked by their liv-
ing standards, with each individual’s height proportional to the value of his or her 
health variable, expressed as a fraction of the mean.

Computation of the concentration index

To illustrate computation, we estimate the concentration index for the public sub-
sidy to hospital outpatient care (subsidy) in Vietnam using data from the 1998 
Vietnam Living Standards Survey (see chapter 14 and O’Donnell et al. [2007]). The 
living standards variable is household consumption per equivalent adult (eqcons), 
and the sample must be weighted (by variable weight). 

By using equation 8.3 or 8.7, an estimate of a concentration index can be com-
puted easily with any statistical package. The only slight complication involves com-

Table 8.3 Under-Five Deaths in Vietnam, 1989–98 (within-group variance known)

Consumption  No. of 
 group  births  R  U5MR  CI  q  a  f · a2  Std Error  f σ2(2R–0.5–0.5C)2 

Poorest  1,002  0.094  0.060  –0.024  0.312  0.648  0.079  0.008  4.631E-06 

2nd  949  0.278  0.034  –0.013  0.482  0.959  0.164  0.006  4.354E-07 

Middle  1,002  0.461  0.041  –0.053  0.695  0.944  0.168  0.007  9.085E-08 

4th  1,082  0.657  0.028  –0.095  0.854  0.842  0.144  0.005  1.423E-06 

Richest  1,280  0.880  0.022  0.000  1.000  0.719  0.124  0.004  3.780E-06 

Total/average  5,315   0.036  –0.184    0.680   1.036E-05

Source: Authors.
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putation of the fractional rank variable in the case that the data must be weighted. 
The weighted fractional rank is defi ned as follows:

(8.8) r w
w

i j
j

i
i= +

=

−

∑
0

1

2
,

where wi is the sample weight scaled to sum to 1, observations are sorting in ascend-
ing order of living standards, and w0 = 0. In Stata, this can be computed as follows:

egen raw_rank=rank(eqcons), unique   
sort raw_rank
quietly sum weight
gen wi=weight/r(sum)
gen cusum=sum(wi)
gen wj=cusum[_n-1]
replace wj=0 if wj==.
gen rank=wj+0.5*wi

where income is the measure of living standards, weight is the original sample 
weight, wi is a scaled version of this that sums to 1, wj is the fi rst term in equation 
8.8, and rank is ri in equation 8.8. Alternatively, the weighted fractional rank can be 
generated using glcurve,4

glcurve eqcons [aw=weight], pvar(rank) nograph

Because weights are applied, the generated variable rank is the weighted fractional 
rank. The rank variables produced by the two procedures will be perfectly cor-
related. The (weighted) mean of the rank produced from the fi rst procedure will 
always be exactly 0.5, and the mean of the rank produced by glcurve will differ 
from 0.5 only at the 4th–5th decimal place.

By using equation 8.3, the concentration index can then be computed using5

qui sum subsidy [fw=weight]
scalar mean=r(mean)
cor subsidy rank [fw=weight], c
sca c=(2/mean)*r(cov_12)
sca list c

By using equation 8.7, the index is computed as follows:

qui sum rank [fw=weight]
sca var_rank=r(Var)
gen lhs=2*var_rank*(subsidy/mean)
regr lhs rank [pw=weight]
sca c=_b[rank]
sca list c

4See chapter 7 for an explanation of glcurve.
5For the corr and sum commands, frequency weights (fw) should be used to get the cor-
rect variance of the weighted rank and its covariance with the health variable of interest. 
The weight variable must be an integer for the frequency weight to be accepted by Stata. If 
the weight variable is a noninteger, analysts will fi rst need to multiply the weight by 10^k, 
where k is the largest number of decimal places in any value of the weight variable. A new 
integer weight variable will then have to be created using the gen new _ weight = int 
(weight). The alternative is to use analytic weights and accept some imprecision.
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Both procedures give an estimate of the concentration index of 0.16700, indicat-
ing that the better-off receive more of the public subsidy to hospital outpatient care 
in Vietnam. 

Standard error

Kakwani, Wagstaff, and van Doorslaer (1997) derived the standard error of a con-
centration estimated from microdata. They did this by noting that the concentration 
index can be written as a nonlinear function of totals, and so the delta method (Rao 
1965) can be applied to obtain the standard error. The resulting formula is essen-
tially a simplifi ed version of equation 8.6 without the second term because at the 
individual level there is no within-group variation. Specifi cally,

(8.9) var Ĉ
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is the ordinate of the concentration curve Lh(p), and q0 = 0. 
Unfortunately, equation 8.9 does not take into account sample weights and other 

sample design features, such as cluster sampling (see chapters 2 and 9), although in 
principle it could be adapted to do so. The formula can be computed easily in Stata. 
We demonstrate this for the Vietnam subsidy example. First, we must recompute 
the concentration index without the application of weights, as follows: 

glcurve subsidy, sortvar(eqcons) pvar(ranku) glvar(ccurve) 
lorenz nograph;
qui sum ranku 
sca var_ranku=r(Var)
qui sum subsidy
sca meanu=r(mean)
gen lhsu=2*var_ranku*(subsidy/meanu)
regr lhsu ranku
sca conindu=_b[rank]

The estimate of the concentration index from the unweighted data is 0.16606. 
Standard errors are then computed using equation 8.9 as follows:

sort ranku
gen cclag = ccurve[_n-1]
replace cclag=0 if cclag==.
gen asqr=((subsidy/meanu)*(2*ranku-1-conindu)+2-cclag-
ccurve)^2
qui sum asqr
sca var=(r(mean)-(1+conindu)^2)/r(N)
sca se=sqrt(var)
sca list conindu se

That gives a standard error of 0.033976, and so a t-ratio of 4.89. 
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The limitation of equation 8.9 is that it cannot be applied directly to data that are 
weighted and/or do not have a simple random sample design. To take such sample 
features into account, one option is simply to use the standard error of the coef-
fi cient on the rank variable in the convenient regression. Because this coeffi cient 
is an estimate of the concentration index, one might expect its standard error to be 
that of the concentration index. This is not quite correct because it takes no account 
of the sampling variability of the estimate of the mean of the health variable that 
enters the transformation giving the left-hand side of the convenient regression. 
Note that the variance of the fractional rank, which is also used in the transfor-
mation, depends only on the sample size and so has no sampling variability.6 It 
can be treated as a constant. One computationally simple way of taking account of 
the sampling variability of the mean is to run the convenient regression without 
transforming the left-hand-side variable but (equivalently) transforming the rank 
coeffi cient instead. A delta method standard error can then be computed for the 
transformed coeffi cient that takes account of the sampling variability of all terms 
used in the transformation. From the regression

(8.10) h r ui i i= + +α β1 1

the estimate of the concentration index is given by
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By using the facts that the least squares predicted value has the same mean 
as the dependent variable and that the mean of the fractional rank variable is 0.5, 
equation 8.11 can be written as
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Because the estimate is now written as a function of the regression coeffi cients, a 
standard error can be obtained by applying the delta method. In Stata, this proce-
dure can be implemented very easily using nlcom. 

regr subsidy rank [pw=weight]
nlcom ((2*var_rank)/(_b[_cons]+0.5*_b[rank]))*_b[rank]

For the Vietnam outpatient subsidy example, that gives a standard error of 0.034016 
for the estimate of the (weighted) concentration index of 0.16700 reported above. 
The standard error of the rank coeffi cient from equation 8.7 is 0.034945, and so it 
appears that taking account of the sampling variability of the mean makes very 
little difference. Experimentation suggests that this is generally the case, and so 
standard errors from the convenient regression equation 8.7 can be used without 
too much concern for inaccuracy.

In Stata, if weights are applied in the regression, then the standard error returned 
will be robust to heteroskedasticity. If there are no weights, heteroskedasticity robust 

6This is due to the nature of the fractional rank variable. Its weighted mean is always 0.5, 
and its variance approaches 1/12 as n goes to infi nity. For given n, the variance of the frac-
tional rank is always the same.
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standard errors can be obtained by adding the option robust to the regression. If 
this is done, then the delta method standard errors computed by a nlcom command 
following the regression will also be robust. If the survey has a cluster sampling 
design, then the standard errors should be corrected for within-cluster correlation. 
This is achieved by adding the option cluster,

regr subsidy rank [pw=wt], cluster(commune)
nlcom ((2*var_rank)/(_b[_cons]+0.5*_b[rank]))*_b[rank]

where commune is the variable denoting the primary sampling unit—communes 
in the VLSS. Allowing for within-cluster correlation raises the standard error in the 
Vietnam subsidy example from 0.034016 to 0.041988. 

Correcting for across-cluster correlation may or may not be necessary, depend-
ing on the sample design, but a form of serial correlation is always likely to be pres-
ent owing to the rank nature of the regressor (Kakwani, Wagstaff, van Doorslaer 
1997). To correct the standard errors for this, one can use the Newey-West (Newey 
and West 1994) variance-covariance matrix, which corrects for autocorrelation, as 
well as heteroscedasticty. In Stata, the command newey produces OLS regression 
coeffi cients with Newey-West standard errors. To use this, the data must be set to 
a time series format with the time variable being, in this case, the living standards 
rank. This must be an integer valued variable, and so the fractional rank created 
above cannot be used. Below, we create the appropriate rank variable (ranki) 
before running the newey command:

egen  ranki=rank(eqcons), unique
tsset ranki
newey subsidy rank [aw=weight], lag(1)
nlcom ((2*var_rank)/(_b[_cons]+0.5*_b[rank]))*_b[rank]

Note that the (weighted) fractional rank and not the integer valued rank is still used 
in the regression. Weights (analytical) are allowed, and the lag(#) option must be 
included to specify the maximum number of lags to be considered in the autocorre-
lation structure. For our example, this estimator gives a standard error of 0.034568, 
slightly larger than if we allow for heteroskedasticity only (0.034016), but smaller 
than if we allow for within-cluster correlation (0.041988).

Demographic standardization of the concentration index

As discussed in chapter 5, we are often interested in measuring socioeconomic-
related inequality in a health variable after controlling for the confounding effect 
of demographics. In chapter 5  we explained how this can be done using both direct 
and indirect methods of standardization. To estimate a standardized concentra-
tion index, one could use either method of standardization to generate a predicted 
health variable purged of the infl uence of demographics across socioeconomic 
groups, as explained in chapter 5, then compute the concentration index for this 
standardized variable. 

In the case that one wishes to standardize for the full correlation with con-
founders, and so there are no control (z) variables (see chapter 5), a shortcut method 
of obtaining an indirectly standardized concentration index is simply to include 
the standardizing variables directly in the convenient regression. This is precisely 
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what is being done in the literature that makes use of the relative index of inequal-
ity (e.g., Mackenbach et al. [1997]). From the regression
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where xj are the confounding variables, for example, age, sex, and so on, the OLS 
estimate β̂2 is an estimate of the indirectly standardized concentration index. Com-
putation requires simply adding the confounding variables to the regression com-
mands discussed above.

Sensitivity of the concentration index to the living standards measure

In chapter 6  we described alternative measures of living standards—consumption, 
expenditure, wealth index—and noted that it is not always possible to establish a 
clear advantage of one measure over others. It is therefore important to consider 
whether the chosen measure of living standards infl uences the measured degree 
of socioeconomic-related inequality in the health variable of interest. When the 
concentration index is used as a summary measure of inequality, the question is 
whether it is sensitive to the living standards measure. 

As noted above, the concentration index refl ects the relationship between the 
health variable and living standards rank. It is not infl uenced by the variance of the 
living standards measure. In some circumstances, this may be considered a disad-
vantage. For example, it means that, for a given relationship between income and 
health, the concentration index cannot discriminate the degree of income-related 
health inequality in one country in which income is distributed very unevenly 
from that in another country in which the income distribution is very equal. On 
the other hand, when one is interested in inequality at a certain place and time, it is 
reassuring that the differing variances of alternative measures of living standards 
will not infl uence the concentration index. However, the concentration index may 
differ if the ranking of individuals is inconsistent across alternative measures.

Wagstaff and Watanabe (2003) demonstrate that the concentration index will 
differ across alternative living standards measures if the health variable is corre-
lated with changes in an individual’s rank on moving from one measure to another. 
The difference between two concentration indices C1 and C2, where the respective 
concentration index is calculated on the basis of a given ranking (r1i and r2i)—for 
example, consumption and a wealth index—can be computed by means of the 
regression 
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where ∆ri = r1i – r2i is the reranking that results from changing the measure of socio-
economic status, and σ∆r

2  is its variance. The OLS estimate of γ  provides an estimate 
of the difference (C1 – C2). Signifi cance of the difference between indices can be 
tested by using the standard error of γ .7

For 19 countries, Wagstaff and Watanabe (2003) test the sensitivity of the con-
centration index for child malnutrition to the use of household consumption and a 

7This ignores the sampling variability of the left-hand-side estimates.
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wealth index as the living standards ranking variable. Malnutrition is measured by 
a binary indicator of underweight and another for stunting (see chapter 4). For each 
of underweight and stunting, the difference between the concentration indices is 
signifi cant (10%) for 6 of 19 comparisons. This suggests that in the majority of coun-
tries, child nutritional status is not strongly correlated with inconsistencies in the 
ranking of households by consumption and wealth.

But there is some evidence that concentration indices for health service utiliza-
tion are more sensitive to the living standards measure. Table 8.4, reproduced from 
Lindelow (2006), shows substantial and signifi cant differences between the concen-
tration indices (CI) for a variety of health services in Mozambique using consump-
tion and an asset index as the living standards measure. In the case of consump-
tion, the concentration index indicates statistically signifi cant inequality in favor of 
richer households for all services. With households ranked by the asset index rather 
than consumption, the inequality is greater for all services except health center vis-
its, for which the concentration index indicates inequality in utilization in favor of 
poorer households. 

It appears that the choice of welfare indicator can have a large and signifi cant 
impact on measured socioeconomic inequalities in a health variable, but it depends 
on the variable examined. Differences in measured inequality refl ect the fact that 
consumption and the asset index measure different things, or at least are different 
proxies for the same underlying variable of interest. But only in cases in which the 
difference in rankings between the measures is also correlated with the health vari-
able of interest will the choice of indicator have an important impact on the fi nd-
ings. In cases in which both asset and consumption data are available, analysts are 
in a position to qualify any analysis of these issues by reference to parallel analysis 
based on alternative measures. However, data on both consumption and assets are 
often not available. In these cases, the potential sensitivity of the fi ndings should be 
explicitly recognized. 
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