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11
Nonlinear Models for Health 
and Medical Expenditure Data 

Heath sector variables are seldom continuous and fully observed. For example, 
they can be discrete (e.g., death), censored (e.g., health care expenditure), integer 
counts (e.g., visits to doctor), or durational (e.g., time to death). Multivariate analy-
sis of such dependent variables requires nonlinear estimation. In this chapter, we 
consider the main (parametric) nonlinear estimators that are of relevance to the 
analysis of health sector inequalities. The literature is extensive, and our coverage is 
necessarily rudimentary, with a focus on practicalities rather than theory.

Binary dependent variables 

There are numerous examples of health sector variables that take only two val-
ues—dead/alive, ill/not ill, stunted/not stunted, goes to doctor/doesn’t go to doc-
tor, and so on. In some cases, there are only two possible values of the underlying 
characteristic, for example, dead/alive. In other cases, the underlying characteristic 
is continuous, for example, degrees of illness, but only two categories are observ-
able in the data—ill/not ill. 

Let yi  be the characteristic of interest. Conventionally, yi = 1 indicates that 
observation i possesses the characteristic, for example, illness, and yi = 0  indi-
cates that it does not. In general, a model of binary response can be defi ned by the 
following:

 (11.1) E y y Fi i i i i| Pr |X X X[ ]= =( ) = ( )1 β

where E[ ] and Pr( ) indicate expected value and probability, respectively. Differ-
ent functional forms for F( )  defi ne different specifi c models. For example, in the 
linear case, F i iX Xβ β( ) = , we have the linear probability model (LPM). It is often 
claimed that the LPM can be consistently estimated by ordinary least squares 
(OLS). Horrace and Oaxaca (2006) prove that this is true only in the restrictive case 
that Xiβ  has a zero probability of lying outside the (0,1) range. A related problem is 
that the predicted probability given in equation 11.1 is not constrained to the (0,1) 
range, making results diffi cult to interpret in such circumstances. A further prob-
lem is that the errors are nonnormal and heteroscedastic, and so the estimator is 
not effi cient and conventional standard errors are invalid. That can be (partially) 
fi xed by weighted least squares.

An obvious, and common, response to these problems with OLS is to choose 
some functional form for F( ) that constrains estimated probabilities to lie in the 
(0,1) range. The two most popular choices are the cumulative standard normal 
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distribution, which gives the probit model, and the cumulative standard logistic 
distribution, which gives the logit model. Thinking about binary responses being 
driven by some underlying but unobservable (latent) characteristic helps to motivate 
such models. For example, let yi

* indicate propensity to contract illness. When this 
crosses some threshold, say yi

* > 0 , the individual is ill. Specifying the latent vari-
able to be a linear function of observable and unobservable factors, yi i i

* = +X β ε , and 
choosing a distribution for the error term as either standard normal or logistic gives 
the probit and logit models. Estimation is carried out by maximum likelihood. 

Because the normal and logistic distributions are similar, the choice of a probit 
or logit specifi cation is not important in most cases. Care must be taken not to com-
pare probit and logit coeffi cients directly, however. In both cases, parameters are 
estimable only up to a scaling factor, equal to the unknown standard deviation of 
the error, which is not estimable given the binary nature of the dependent variable. 
Only the relative, not the absolute, effect of explanatory variables are estimable. 
Because variances differ between the normal and logistic distributions, logit coef-
fi cients must be multiplied by 0.625 to be comparable with probit coeffi cients (Ame-
miya 1981). Dividing probit estimates by 2.5 and logit estimates by 4 will make 
them comparable with those from the LPM (Wooldridge 2002). 

Further care must be taken in the interpretation of estimates from latent variable 
models. The (scaled) parameters β  give the (relative) partial effects on the latent 
index yi

* , but these effects are usually not of primary interest. The partial effects on 
the probability of possessing the characteristic are more informative. For example, 
an estimate of how the probability of being sick changes with income is more eas-
ily interpreted than an estimate of how a latent index of sickness propensity var-
ies with income. From equation 11.1, the estimated partial effect of a continuous 
regressor Xk( ) on the (conditional) probability is given by the following:

(11.2) 
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where f ( )  denotes the probability density function and is standard normal and 
logistic in the probit and logit cases, respectively. For a dummy regressor XK( ) , the 
estimated partial effects can be calculated as follows:

(11.3) F X X F Xi K iK K i
ˆ ... ˆ ˆ ˆ ... ˆβ β β β β1 1 1 1 1 1+ + +( ) − + +− − KK iKX− −( )1 1 .

It is clear from equations 11.2 and 11.3 that these partial effects are not constants but 
are observation specifi c. There are two options, either calculate equations 11.2 and 
11.3 at interesting values of all regressors, such as means or medians, or calculate 
the partial effect for each observation and take the average of these. The latter is 
preferable, but the former is somewhat more convenient. In large samples, the par-
tial effect at the means should approximate the mean of the partial effects (Greene 
2000). Calculating at medians, rather than means, ensures that values of dummy 
regressors are either 0 or 1 and, for regressors that are nonlinear transformations of 
variables, for example, quadratics and logs, it avoids the problem that the mean of 
the transformation is not the transformation of the mean. However, using medians 
can create problems of interpretation. For example, it may lead to infeasible combi-
nations of the X’s, setting all values to zero for a set of mutually exclusive indicators 
with less than 50 percent of the sample in each category. Such problems are avoided 
by computing the partial effect for each observation and then taking the mean or 
median of these.
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Box 11.1 Example of Binary Response Models—Child Malnutrition in Vietnam, 1998

We compare the linear probability, logit, and probit models in estimating correlates of 
a discrete state of child malnutrition, defi ned as height-for-age more than two standard 
deviations below the average in a well-nourished (U.S.) population (see chapter 4 ). The 
data are for children younger than 10 years of age and are taken from the 1998 Vietnam 
Living Standards Survey (VLSS). This analysis complements that of a continuous mea-
sure of nutritional deprivation presented in the previous chapter. 

In the following table we present estimates of the parameters of the respective models. 
Standard errors are adjusted for the clustered nature of the sample and are robust to gen-
eral heteroscedasticity (see chapter 10 ). No adjustment is made for stratifi cation, and sam-
ple weights are not applied, it being assumed that stratifi cation is on exogenous factors 
(see chapter 10). There is a great deal of consistency across the estimators in the levels of 
signifi cance of the coeffi cients. As suggested above, dividing logit and probit coeffi cients 
by 4 and 2.5, respectively, makes them approximately comparable to the LPM coeffi cients. 
For the coeffi cient on the male dummy, that gives 0.0669 (= 0.2675/4) for logit and 0.0646 
(= 0.1614/2.5) for probit, which are both larger than the LPM coeffi cient of 0.0563. More 

Child's age (months)

Child's age squared 
(/100)

Child is male

(log) hhold. 
consumption per 
capita

Safe drinking water

Satisfactory sanitation

Years of schooling of 
head of household

Mother has primary 
school diploma

Intercept

 0.0079***
 (0.00075)

 –0.0053***
 (0.00058)

 0.0563***
 (0.01281)

 –0.1849***
 (0.01726)

 –0.0447*
 (0.02685)

 –0.057**
 (0.02306)

 0.0013
 (0.00219)

 –0.0041
 (0.02008)

 1.5681***
 (0.13511) 

 0.0403***
 (0.00394)

 –0.0271***
 (0.00293)

 0.2675***
 (0.06072)

 –0.9403***
 (0.09026)

 –0.2017*
 (0.11669)

 –0.3344***
 (0.11838)

 0.0047
 (0.01070)

 –0.0106
 (0.09218)

 5.4812***
 (0.69589) 

 0.0100***
 (0.00100)

 –0.0068***
 (0.00074)

 0.0661***
 (0.01489)

 –0.2347***
 (0.02255)

 –0.0504*
 (0.02906)

 –0.0822***
 (0.02860)

 0.0012
 (0.00267)

 –0.0027
 (0.02301)

 0.0245*** 0.0097***
 (0.00238) (0.00100)

 –0.0165*** –0.0066***
 (0.00177) (0.00071)

 0.1614*** 0.0639***
 (0.03688) (0.01451)

 –0.5639*** –0.2248***
 (0.05301) (0.02116)

 –0.1208* –0.0482*
 (0.07146) (0.02844)

 –0.1982*** –0.0782***
 (0.06990) (0.02728)

 0.0028 0.0011
 (0.00642) (0.00256)

 –0.0079 –0.0031
 (0.05571) (0.02221)

 3.2734***
 (0.41134)

  Sample size  5,218 

 Note: Robust standard errors in parentheses. Adjusted for clustering and heteroskedasticity. 
Partial effects calculated at medians of regressors.

LPM = linear probability model, OLS = ordinary least squares, MLE = maximum likelihood 
estimator.

***, **, and * indicate signifi cance at 1%, 5%, and 10%, respectively. 

Estimates from Binary Response Models of Stunting, Vietnam 1998 (children <10 years)

Dependent variable = 1 if height-for-age z-score less than –2

 LPM (OLS) Logit (MLE) Probit (MLE)

   Partial  Partial
 Coeff. Coeff. effect Coeff. effect 

(continued)
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Computation

Stata, like many packages, has preprogrammed routines for probit and logit:

probit depvar varlist [pw=weight], robust 
logit depvar varlist [pw=weight], robust 

where depvar and varlist represent dependent and independent variables, 
respectively; [pw=weight] is optional to give weighted (on weight) estimates; 
and robust is optional for heteroscedasticity robust standard errors. If the survey 
data are from a cluster sample, standard errors can be corrected for within-cluster 

Box 11.1 continued

directly, we can compare the partial effects of the regressors on the probability that a child 
is stunted. For the LPM, these marginal effects are given by the coeffi cients themselves 
and so are constants. For the logit and probit models, we have calculated the partial effects 
at the median values of the regressors. In general, the estimated partial effects from logit 
and probit are very close and are larger in magnitude than those from the LPM. 

In the next table, we summarize the distributions of the partial effects estimated 
from the probit model. This form of presentation makes it clear that partial effects vary 
across individuals. For example, the mean effect of satisfactory sanitation is to reduce the 
probability of stunting by 0.0689, from an estimated population average probability of 
0.3737. In absolute terms, the strongest partial effect of satisfactory sanitation is a reduc-
tion in the probability by 0.0790, but this is from a predicted baseline probability for that 
individual of 0.5281. The weakest absolute effect is a reduction in the probability of only 
0.0076, but this is large in relation to the respective baseline probability of 0.0118. 

Partial effects can be calculated with respect to variables of inherent interest, rather 
than transformations of these. For example, in the table, we present the partial effect of 
a currency unit increase in household consumption, as well as the effect of a marginal 
increase in the log of consumption. Partial effects of variables entered in quadratic form, 
such as age, can be calculated but are of limited interest. The partial effect of age itself is 
a function of the partial effects of the fi rst and second powers of age (given in the table). 
This function can be calculated but, given the quadratic nature of the function, the par-
tial effect changes sign. It is of more interest to examine a picture of the quadratic func-
tion and locate its turning point (six years and two months, in this example).

Partial Effects on Probability That Child Is Stunted, Vietnam 1998 (children <10 years)

(derived from probit estimates in table above)

 Mean  Std. dev.  Min  Max

Child's age (months)  0.0086  0.00160  0.0008  0.0098 

Child's age squared (/100)  –0.0058  0.00108  –0.0066  –0.0005 

Child is male  0.0568  0.01045  0.0046  0.0643 

(Log) Household consumption p.c.  –0.1982  0.03675  –0.2250  –0.0174 

Household Consumption p.c. (D)  –0.0001  0.00007  –0.0006  –0.0000 

Safe drinking water  –0.0430  0.00743  –0.0482  –0.0043 

Satisfactory sanitation  –0.0689  0.01240  –0.0790  –0.0076 

Years of schooling of head of hhold.  0.0010  0.00018  0.0001  0.0011 

Mother has primary school diploma  –0.0028  0.00051  –0.0031  –0.0002 

Note: Data are weigted. D = Vietnamese dong. 
Source: Authors.
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correlation using the option cluster(psu), where psu is a variable identifying the 
primary sampling units (see chapter 10).1

A special routine is available to give probit partial effects at specifi c regressor 
values: 

dprobit depvar varlist [pw=weight], robust

By default, this calculates partial effects at the means. To obtain the effects at other 
values, such as medians, the following can be used: 

local vars “varlist”
foreach x of local vars {
 qui sum `x’ [aw=weight], d
 sca `x’_md=r(p50)
}
matrix defi ne medians=(var1_md, var2_md,….)
dprobit depvar varlist [pw=wt], robust at(medians) 

where var1, var2 …. are the names of the regressors in varlist. There is no such 
preprogrammed routine for logit partial effects, but Stata’s general routine for par-
tial effects, mfx, can be used. Simply run a logit and afterward 

mfx compute, at(median) 

where at() specifi es the values at which effects are to be calculated; mean, median, 
zero, defi ned values, or a combination of these can be selected. This is much slower 
than dprobit. It can be speeded up by requesting that standard errors not be cal-
culated through the option nose.

To calculate partial effects for each observation, run probit or logit, then 
obtain predictions of the latent index (xb) and probability of a nonzero dependent 
variable (p) for each observation by 

predict xb if e(sample), xb
predict p if e(sample), p

where if e(sample) is optional and restricts the prediction to observations used in 
the estimation. Defi ne two locals containing the names of the continuous variables (e.g., 
cont1, cont2, etc. ) and those of the dummy variables (e.g., dummy1, dummy2, etc.),

local cont “cont1 cont2 ...”
local dummies “dummy1, dummy2, ...”

For continuous regressors, defi ne a variable that will be used to transform the 
coeffi cients

gen t_var=normden(xb)   | for probit
gen t_var=p*(1–p)    | for logit

and, using equation 11.2, obtain the partial effects from

foreach c of local cont {
 gen pe_`c’=t_var*_b[`c’]
}

1If the survey is stratifi ed and the analyst also wishes to take that into account in computa-
tion of the standard errors, Stata’s survey estimators for probit/logit can be used.
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For dummy regressors, use equation 11.3, and obtain the partial effects for pro-
bit from the following:

foreach d of local dummies {
 gen pe_`d’=p-norm(xb–_b[`d’])
 replace pe_`d’=norm(xb+_b[`d’])–p if `d’==0  
}

For logit, use

foreach d of local dummies {
 gen pe_`d’=p–(exp(xb–_b[`d’])/(1+exp(xb–_b[`d’)))
 replace pe_`d’=(exp(xb+_b[`d’])/(1+exp(xb+_b[`d’])))-p 

if `d’==0
}

Finally, obtain summary statistics of the distribution of the following partial 
effects: 

summ `cont’ `dummies’ [fw=weight], detail

where [fw=weight] applies weights and should be included where these exist. 
This procedure will generate, for example, estimates of the population means of 

the partial effects. For inference, standard errors of these estimates would have to 
be generated by the delta method (Wooldridge 2002).

Limited dependent variables

A limited dependent variable is continuous over most of its distribution but has a 
mass of observations at one or more specifi c values, such as zero. The most impor-
tant example in the health sector is medical expenditure, which is zero for many 
individuals over a survey recall period, such as 12 months. For example, in 1998 
the average Vietnamese spent 153,000 Vietnamese dong (D) ($1 = 13,987D) out-of-
pocket on medical care during a 12-month period, but 17 percent spent nothing 
at all. 

There are a multitude of statistical approaches to modeling of a limited depen-
dent variable—for example, the two-part model, the Tobit model, the sample selec-
tion model, hurdle models, and fi nite mixture models. For a comprehensive survey, 
see Wooldridge (2002). Here, we restrict attention to the most popular approaches to 
modeling medical expenditures. For an excellent survey of this literature, see Jones 
(2000). Equity analysis of medical expenditures may focus on their income elastic-
ity, on variation in the price elasticity of health care with household income, on the 
responsiveness of medical expenditure to health shocks, or the extent to which this 
responsiveness is reduced by unequally distributed insurance coverage.

Two-part model

The most straightforward approach is the two-part model (2PM). In its most popu-
lar form, this comprises a probit (or logit) model for the probability that an individ-
ual makes any expenditure on health care and OLS, applied only to the subsample 
with nonzero expenditures, to estimate correlates of the positive level of expendi-
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ture. Given that typically the distribution of medical expenditures is right skewed, 
invariably the log of expenditure is modeled in the second part OLS. 

Application of OLS to only part of the sample raises the possibility of sample 
selection bias. The issue has been the subject of a great deal of discussion (Jones 
2000). In summary, consistency of the 2PM for the model parameters rests on strong 
assumptions. Nonetheless, if the aim is simply to predict conditional means and 
not to make inferences about individual parameters, then the 2PM may perform 
reasonably well (Duan et al. 1983). On that basis, the model will often be adequate 
for analysis of health sector inequalities, where we simply want to predict, for exam-
ple, medical expenditure conditional on income, age, gender, and so on. 

Following Jones (2000), let the probability that medical expenditure yi( )  is posi-
tive be determined by observable X1i( )  and unobservable ε1i( )  factors. Let ln yi( )  
be the log of positive medical expenditure, with covariates X2i , and unobservable 
determinants ε2i . Consistency of the 2PM is predicated on an assumption of condi-
tional mean independence (Jones 2000).

(11.4) E y y E yi i i i i iln | , ln | ,( ) >⎡⎣ ⎤⎦ = ( ) + >0 02 2 1 1 1X Xβ β ε XX X2 2 2 2i iβ β⎡⎣ ⎤⎦ =

In other words, conditional on expenditure being positive, the unobservable deter-
minants of its log have zero mean. To justify the assumption, either unobservable fac-
tors that infl uence the positive level of expenditures ε2i( )  must be independent of 
those governing the probability of a positive expenditure ε1i( ) , or the two error terms 
must have some peculiar joint distribution that gives a conditional distribution cen-
tered around zero. The latter would be an extreme and nontestable assumption (Jones 
2000). The former assumption can possibly be supported under certain decision-
making processes, for example, if the individual decides whether to seek treatment 
without considering how much to spend during the course of treatment. That rules out 
the possibility that the individual decides not to seek care because of the anticipated 
cost of a course of treatment. In support of such a sequential model of decision mak-
ing, it might be claimed that the patient delegates all treatment decisions to the doc-
tor. Empirically, however, such a defense is weak because typically survey data span 
a period of calendar time and not the duration of an illness episode (Deb and Trivedi 
1997). Even if it is accepted that medical care decisions are made in a sequential man-
ner, correlation between unobservables would still arise in cases in which common 
variables are omitted from the two stages of the decision-making process (Jones 2000).

The expected level of medical expenditure is given by the following:

(11.5) E y y E y yi i i i i i i| Pr | | ,X X X[ ]= >( ) >[ ]0 01 2 .

Unfortunately, this value cannot be estimated directly when the second part of 
the model is estimated in logs, as is usually the case. This is known as the retrans-
formation problem; we have to get back from logs to levels. Assumption 11.4 is not 
suffi cient to identify 11.5. For possible solutions to the problem, see Jones (2000) and 
Mullahy (1998). This rather weakens the argument that the 2PM is reasonable when 
one is interested only in estimating the conditional means. 

Tobit model

Whereas the 2PM assumes that two independent decisions lie behind medical 
expenditures, the Tobit model, at the other extreme, assumes a single decision. The 
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individual chooses the level of medical expenditure that maximizes his or her wel-
fare. Positive expenditures correspond to desired expenditures. Zero expenditure 
represents a corner solution, in which income and/or preferences for health are so 
low that spending nothing on health care is best for the individual. The model can 
be described using the concept of a latent, desired level of expenditure:

(11.6) y INi i i i
* , ~ ( , )= +X β ε ε σ0 2 . 

Observed expenditure is assumed to be related to the latent value by the 
following:

(11.7) y
y if y

i
i i=

>⎧
⎨
⎪

⎩⎪

* * 0
0otherwise.

The assumption of a single decision-making process is most probably strong. It 
requires that before making contact with the health services, the individual has full 
information on the costs of alternative courses of treatment. It also rules out the 
possibility that the initial decision to seek treatment is made solely by the individ-
ual, while both the patient and the doctor infl uence the decision about the amount 
of treatment.

The Tobit model is estimated by maximum likelihood (ML). As a rule of thumb, 
Tobit ML estimates may be approximated by the OLS estimates from the 2PM 
divided by the proportion of nonzero observations in the sample (Greene 2000). 
Predicted medical expenditure over the whole sample is still based on equation 
11.5, but the second term in the product is no longer given by equation 11.4 but by 
the following:

(11.8) E y yi i i i i i

i

i
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where φ( )  and Φ( )  are the standard normal probability density and cumulative 
density functions, respectively, and λi  is known as the inverse Mill’s ratio (IMR). 

Sample selection model

The sample selection model (SSM), or generalized Tobit, can be considered, some-
what informally, to lie midway between the extremes of the Tobit and the 2PM. 
Whereas the Tobit assumes a single decision process and the 2PM two independent 
decisions, the SSM allows for two interdependent decisions. The decision to seek 
medical care and the choice of how much to spend can be infl uenced by distinct but 
correlated observable and unobservable factors. In latent variable form, the model 
is given by the following:

(11.9) y jji ji j ji
* , ,= + =X β ε 1 2 

(11.10) y
y if y

i
i i=

>⎧
⎨
⎪

⎩⎪
2 1 0

0

* *

otherwise.

Assuming the two error terms are jointly normally distributed, the model can be 
estimated either by the Heckman two-step procedure or by ML. The former involves 
estimating a probit for the probability of nonzero expenditure, using the results to 
estimate the IMR and then running OLS on the nonzeros with the estimated IMR 
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included to correct for selection bias. That is, in the second stage, the following is 
estimated:

(11.11) y ei i
i

i
i= +

( )
( ) +X
X

X
2 2

1 1

1 1
2β ρσ

φ β

β

ˆ

ˆ ,
Φ

where ρ is the correlation coeffi cient between the errors, and σ2  is the standard 
deviation of ε2i  (σ1 1= ). The t-ratio for the IMR provides a test for selection bias. 
Standard errors must be corrected for the inclusion of the estimated IMR among 
the regressors. Packages programmed for the Heckman estimator will make the 
correction automatically. Effi ciency gains can be realized through ML estimation.

Although the SSM is, in an informal sense, more general, this comes at the cost of 
making greater demands on the data with respect to identifi cation. Given the nonlin-
earity of the IMR, equation 11.11 is identifi ed even if the regressor matrices X1  and 
X2 are identical, but in this case the Mill’s ratio will be closely correlated with the 
other regressors and, consequently, parameters will not be estimated with precision. 
It is therefore preferable to have a variable that infl uences the decision of whether to 
spend anything on health care but, conditional on this, does not infl uence the posi-
tive level of expenditure. Such variables, however, are few and far between. 

The Tobit and 2PM avoid this problem but only by assumption. The bottom line 
is that it is diffi cult to make an a priori case for any one model of medical expendi-
tures. One should probably be most skeptical of the Tobit model and its assumption 
of a single decision process driving both zero and positive expenditures. In choos-
ing between the 2PM and the SSM, it is necessary to consider the purpose of the 
analysis (prediction or parameter estimation), the likely degree of selection bias, 
and the information available to identify it. 

Box 11.2 Example of Limited Dependent Variable Models—
Medical Expenditure in Vietnam, 1998

We examine correlates of annual out-of-pocket expenditures on health care in Vietnam. 
We use data from the 1998 VLSS. Almost one-fi fth (18%) of the observations made no 
expenditures on medical care. In addition to this mass at zero expenditure, the distri-
bution has a long right tail. Given such skewness, one would expect a log transforma-
tion of the dependent variable to be appropriate, and the results confi rm this. We make 
two comparisons, the 2PM with the SSM taking logs of positive expenditures in each 
case and the 2PM with the Tobit leaving the dependent variable in levels (see the table 
below). 

Results from the maximum likelihood estimator of the SSM are given. These do not 
differ substantially from estimates obtained using the Heckman two-step procedure. 
Estimates of the coeffi cients of the selection equation display no substantial differences 
across the estimators. There are no differences in levels of signifi cance. Coeffi cient esti-
mates for the continuous parts of the models do show some differences, with those 
from the SSM generally of greater magnitude. There are some differences in levels of 
signifi cance. 

There is a positive and large degree of correlation between the two equation errors 
(0.847). The null of no correlation, and therefore no selection bias, is fi rmly rejected. In 
the absence of any variable that can plausibly be argued to affect the probability of pos-
itive expenditure but not its level, the correlation parameter is being identifi ed through 
functional form alone. Graphical analysis confi rms that, in this case, the inverse Mill’s 
ratio is suffi ciently nonlinear in its argument to avoid severe collinearity problems.

(continued)
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Box 11.2 continued

Comparison of Two-Part and Sample Selection Model Estimates of Medical Expenditure, Vietnam 1998

Dependent variables: Participation = 1 if medical expenditure positive; Continuous = log of (positive) 
expenditure 

 Two-part model Sample selection model 

 Participation  Continuous Participation Continuous
 (probit)  (OLS)  (MLE)  (MLE) 

 Coeff.  Rob. SE  Coeff.  Rob. SE  Coeff.  Rob. SE  Coeff.  Rob. SE 

body mass  –0.1382*** 0.0332  –0.0800*** 0.0254  –0.1117*** 0.0297  –0.1430*** 0.0283
index 

(body mass 0.2820*** 0.0820  0.1212*  0.0643  0.2265***  0.0728  0.2488***  0.0709
index)2

log(rental value  0.3079*** 0.0434  0.5065***  0.0264  0.3393***  0.0350  0.6262***  0.0378
of house)  

satisfactory  –0.2160*** 0.0775  –0.2362*** 0.0434  –0.2183*** 0.0713  –0.3283*** 0.0605
sanitation 

house not of  0.0900*  0.0528  0.1896***  0.0363  0.0831*  0.0459  0.2279***  0.0428 
solid materials

attended school,  0.0527  0.1110  –0.2522*** 0.0386  0.0173  0.1023 –0.2240*** 0.0638
no diploma 

attended school 0.0985  0.1320  –0.1335*** 0.0482  0.0674  0.1221  –0.0839  0.0774
& diploma 

head of hhold  –0.0563  0.0570  –0.1557*** 0.0391  –0.0684  0.0526  0.1761***  0.0462 
has diploma

head of hhold   –0.0025  0.0078  –0.0112**  0.0049  –0.0029  0.0070  –0.0118**  0.0059 
school grade

      Rho  0.8470  0.0195 

Sample size 27,368  22,645    Wald (Rho=0) 324.6 p=0.0000 

Test slope Wald = 515 p = 0.0000 F = 134.2 p = 0.0000  Wald = 3448 p = 0.0000
parameters 
all zero 

Note: All models also include a 3rd-degree polynomial in age, gender dummy, head of household dummy, quadratic in 
household size and regional dummies. 
MLE = maximum likelihood estimator; Rob. SE = robust to hetero. and clustering standard error; 
Rho = coeffi cient of correlation of errors; Wald (rho = 0) = Wald test of null of rho = 0. 
***, **, and * signifi cant at 1%, 5%, and 10%, respectively. 

Comparison of the 2PM with the Tobit is a little less comforting (see following table). First, it is appar-
ent that estimation in levels is less appropriate. The coeffi cient estimates differ substantially between the 
estimators and the scaling of the OLS coeffi cients, that is, dividing by the proportion of “positives” does not 
get us particularly close to the Tobit estimates. Mean predicted expenditure (over the full sample) from the 
Tobit model, at 374.2, is well above the actual mean of 157.2. 
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Computation

Computation of the 2PM is straightforward. Run a probit for the probability of 
positive expenditure followed by OLS (regr) for the log of expenditure on the 
selected sample. Stata has a preprogrammed routine heckman for the SSM. For the 
(consistent) two-step estimator, use the following: 

heckman depvar varlist, sel(depvar_s = varlist_s) twostep ///
mills(imr)

where depvar is the continuous dependent variable (e.g., expenditures) and 
varlist associated regressors; depvar_s is a binary variable identifying the 
selected sample (those with positive expenditures) and varlist_s associated 
regressors; mills(imr) saves the inverse Mill’s ratio and calls it imr. Omitting the 
twostep option gives the MLE, and with this robust and cluster adjusted stan-
dard errors can be requested.

To examine whether the Mill’s ratio is nonlinear over its sample range, the fol-
lowing can be used:

predict xbsel if depvar_s==1, xbsel 
twoway (scatter xbsel imr if depvar_s==1)

To estimate a Tobit model with censoring at zero, as in the example, use the following:

tobit depvar varlist, ll(0) 

Box 11.2 continued

Comparison of Two-Part and Tobit Model Estimates of Medical Expenditures 
Vietnam 1998

Dependent variable: Level of annual medical expenditure 

 Two-part model (OLS part) Tobit (MLE)

 Coeff. SE Scaled coeff. Coeff. SE 

Body mass index  –19.21  15.94  –23.18  –47.53***  15.11 

(body mass index)2  42.11  41.42  50.81  100.69***  37.64 

Log (rental value of house)  211.66***  24.01  255.43  249.15***  8.86 

Satisfactory sanitation  –73.78***  17.87  –89.04  –111.55***  16.05 

House not of solid materials  37.18***  11.89  44.87  51.34***  12.36 

Attended school, no diploma  –54.36**  22.93  –65.61  –38.04**  19.16 

Attended school & diploma  –31.23  25.35  –37.69  –6.14  23.78 

Head of hhold has diploma  –10.14  27.97  –12.24  –21.09  18.30 

Head of hhold school grade  –9.85**  4.13  –11.88  –9.03***  2.13 

Sample size 22,645   27,335 

Test of all slope parameters zero F = 14.29 p = 0.0000   LR = 1887 p = 0.0000 

Note: All models also include a 3rd degree polynomial in age, gender dummy, head of 
household dummy, quadratic in household size and regional dummies. 

Scaled coeff. = OLS coeffi cient divided by sample proportion with positive expenditure. 
MLE = maximum likelihood estimator; SE = standard error; LR = Likelihood ratio test. 
***, **, and * signifi cant at 1%, 5%, and 10%, respectively. 

Source: Authors.
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Count dependent variables

Many of the variables of interest in the health sector are nonnegative counts of 
events. For example, visits to the doctor, drugs dispensed, days ill, and so on. A 
count is a variable that can take only integer-values. Often, as with most health 
count variables, negative values are not possible. Typically, the distribution of such 
variables tends to be right skewed, often comprising a large proportion of zeros and 
a long right-hand tail. The discrete nature of a nonnegative count dependent vari-
able and the shape of its distribution demand the use of particular estimators. For 
example, least squares would not guarantee that predicted values are nonnegative.

The most basic approach is to assume a Poisson process to describe the prob-
ability of observing a specifi c count of events over a fi xed interval. That is, the prob-
ability of observing a count of yi , conditional on a set of explanatory variables, Xi , 
is assumed to be given by

(11.12) Pr | exp !y y yi i i i i
iX( ) = −( )λ λ

where exp() is the exponential function, yi ! indicates yi factorial, and λi  is the con-
ditional mean of the count and is usually specifi ed as 

(11.13) λ βi i i iE y= [ ]= ( )| expX X .

A peculiarity of the Poisson distribution is that its mean and its variance are 
both equal to its one parameter, λ . This is often restrictive. In health applications, 
for example, the conditional mean is usually less than the conditional variance. In 
jargon, there is overdispersion. One consequence can be underprediction of the num-
ber of observations with zero counts; again, an empirical feature of many health 
care applications. Overdispersion can be allowed for, or rather imposed, through 
alternative distributional assumptions. For example, a negative binomial specifi ca-
tion maintains the Poisson process (equation 11.12) but extends equation 11.13 to 
include an error term, for which a (gamma) distribution is assumed. As a result, the 
(conditional) variance of the count is restricted to be greater than its mean (Cam-
eron and Trivedi 1986). The difference between the variance and mean, that is, the 
dispersion, can be specifi ed as proportional to the mean (NegBin I) or a quadratic 
function of the mean (NegBin II) (Cameron and Trivedi 1986). The model can be 
further generalized by allowing the dispersion to vary across observations with a 
set of regressors. 

Overdispersion is not the only reason a simple Poisson model may underpre-
dict the number of zero counts. There may be a particular process responsible for 
generating zeros that is distinct from that generating other values of the count vari-
able. One possibility, in the context of health care utilization, is a sequential deci-
sion-making process, as discussed in the previous section. This takes us back to 
the 2PM. In a count framework, the 2PM consists of a probit/logit (or Poisson/
NegBin) to model the probability of a nonzero count followed by a count regres-
sion, such as Poisson or NegBin, applied to observations with positive counts only 
and allowing for the truncation at zero (Pohlmeier and Ulrich 1995). Independence 
is assumed between the two processes. Other possibilities are “zero-infl ated” mod-
els and latent class models (Jones 2000, 318–24). 

Unobservable heterogeneity, deriving time-invariant individual effects in a 
panel data context or community effects in a cross section, can be taken into account 
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in estimation of the Poisson model through a random-effects specifi cation. Alter-
natively, with a fi xed-effects specifi cation of the Poisson, individual/community 
effects are eliminated. These are somewhat analogous to the random- and fi xed-
effects specifi cation in a linear context discussed in chapter 10. The random effects 
specifi cation is more effi cient but requires an assumption that individual/commu-
nity effects are independent of the regressors. A fi xed-effects specifi cation relaxes 
the assumption. Apart from taking unobservable heterogeneity into account, these 
methods have the further important advantage of relaxing the equi-dispersion 
restriction of the Poisson model (Wooldridge 2002). 

Box 11.3 Example of Count Data Models—Pharmacy Visits in Vietnam, 1998

Annual visits to a pharmacy or drug peddler in Vietnam provides a good example of 
a distribution suited to the application of count data models. That is, there are a large 
number of zeros and a long right tail. 

 No. of pharmacy visits  Frequency

 0 20865

 1 3980

 2 1899

 3 846

 4 434

 5 197

 6 79

 7 52

 8 25

 9 5

 10+ 124 

It should be acknowledged that we chose this distribution on the basis of its suitability 
for count analysis. With many count variables encountered in health applications, the 
dominance of zero values is much greater than in this example and the best option is 
simply to dichotomize the variable and use probit or logit to model the probability of a 
nonzero count.

Estimates and robust standard errors from a NegBin II model of pharmacy visits are 
given in the fi rst two columns of the following table. NegBin II was chosen over NegBin 
I by comparison of the log-likelihood values. There is strong evidence of overdispersion 
as indicated by the magnitude of the dispersion parameter and the LR test, which deci-
sively rejects the Poisson (equi-dispersion) specifi cation. 

Moving to a 2PM, there is some loss of signifi cance, with signifi cant effects in the 
fi rst stage probit only. Restricting the count regression to positive values is not suffi cient 
to remove overdispersion—a Poisson specifi cation is still strongly rejected. Finally, we 
estimate a fi xed-effects Poisson on all observations. The fi xed effects are those of 194 
communes. Point estimates from the FE Poisson are somewhat similar to those from 
NegBin II on the full sample, but there are large differences in levels of signifi cance for 
some interesting variables. In particular, the household consumption effect becomes 
strongly signifi cant. Apparently, the commune effects had initially confounded this 
(negative) income effect.  (continued)
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Computation

The Stata programmed routine for the Poisson model is poisson. For NegBin 
models it is

nbreg depvar varlist, dispersion(constant) cluster(commune)

where dispersion(constant) is optional and requests NegBin I; the default is 
NegBin II . Here the cluster option is used to correct standard errors for within-
commune correlation. Note that an LR test against Poisson is generated only if the 
options robust or cluster are not specifi ed. For the second part of a 2PM, the 
truncated Poisson or negative binomial can be computed by using the commands 

Box 11.3 continued

Count Models for Annual Pharmacy Visits, Vietnam 1998

   Two-part model    

 NegBin II   Truncated Fixed-effects
 (all observations)  Probit  NegBin II  Poisson 

 Coeff.  Rob. SE  Coeff.  Rob. SE  Coeff.  Rob. SE  Coeff.  Rob. SE 

Log hhold.  –0.0314  0.0648  –0.0451  0.0432  0.0559  0.1303  –0.0710***  0.0221 
consumption 
per capita 

Attended school,  –0.1696**  0.0734  –0.0771  0.0547  –0.1038  0.3238  –0.1422***  0.0263 
no diploma 

Attended school  –0.1486  0.0976  –0.0760  0.0701  –0.0957  0.2928  –0.1171***  0.0327 
& diploma 

Body mass index  –0.1640***  0.0401  –0.1006***  0.0242  –0.0818  0.1015  –0.1462***  0.0207 

Body mass  0.3582***  0.1019  0.2081***  0.0593  0.2117  0.2973  0.3215***  0.0500
index2/100 

Satisfactory  –0.1792**  0.0748  –0.1065**  0.0443  –0.1445  0.1076  –0.1347***  0.0276 
sanitation 

House not built   0.1394***  0.0535  0.0399  0.0365  0.1900  0.1807  0.0786***  0.0221 
of solid materials

Head of household  0.1187**  0.0485  0.0662***  0.0239  0.0850  0.3022  0.1147***  0.0233 

Household size  –0.0401***  0.0119  –0.0352***  0.0080  0.0017  0.0227  –0.0525***  0.0048 

Dispersion   2.6387  0.1547  n.a.   2.5372   n.a.
parameter (alpha) 

LR test of  10,685  p = 0.0000  n.a.   41,656  p = 0.0000  n.a.
equidispersion 

Sample size  27,365   27,368   7,441   27,176 

Log-likelihood  –25,661.4   –15,287.4   –10,176.5   –28,132.8 

Note: All models also include a 3rd-degree polynomial in age and gender dummy. All models except 
FE Poisson include region dummies. Rob. SE = robust to hetero. and clustering standard error; Log-L = log 
likelihood. LR test of equidispersion is NegBin against Poisson (p = p-value). ***, **, and * signifi cant at 1%, 5%, 
and 10%, respectively. 

Source: Authors.
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trnpois0 and trnbin0, respectively, which can be downloaded from the Stata 
Web site. In the latter case, 

trnbin0 depvar varlist if depvar>0, cluster(commune)

Random- and fi xed-effects Poisson models are obtained from the following:

xtpois depvar varlist, fe i(commune) 

where i(commune) specifi es common effects for all observations with the same 
values of the variable commune, and the option fe requests the fi xed-effects model. 
The default is random effects. 

Further reading

For a comprehensive review of econometric analyses of health and health care data, 
see Jones (2000). A more concise review, along with applications, can be found 
in Jones and O’Donnell (2002). For a practical guide to health econometrics con-
taining many worked examples and Stata code, see Jones (2007). More generally, 
Wooldridge (2002) and Cameron and Trivedi (2005) are both excellent microecono-
metrics textbooks. 
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