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Multivariate Analysis of Health Survey Data

The most basic description of health sector inequality is given by the bivariate 
relationship between a health variable and some indicator of socioeconomic sta-
tus (SES) captured, for example, by the concentration curve and index. For a fi ner 
description, the analyst might want to standardize for demographic factors, such as 
age and gender (see chapters 5 and 15 ). Or, the analyst might want to explain the 
inequality through decomposition into its constituent parts (see chapters 12 and 
13). More ambitiously, the analyst might want to test for the existence of a causal 
relationship between a health variable and SES and to examine the nature of any 
causality. All of these tasks require moving from bivariate to multivariate analysis. 
In this chapter, we discuss some issues that generally deserve consideration when 
undertaking multivariate analysis of survey data for the purpose of learning about 
health sector inequality or inequity. First, we distinguish between descriptive and 
causal analysis and identify the statistical issues that are relevant in each case. Sec-
ond, because health data invariably derive from complex sample surveys, we con-
sider the consequences of sample design for estimation and inference. To illustrate, 
we use a variety of methods to conduct multivariate analysis of child nutritional 
status in Vietnam. In the following chapter, we present some of the estimators most 
commonly used in analysis of health data. 

Descriptive versus causal analysis

Descriptive analysis

As always, the appropriate statistical approach depends on the question to be 
answered. If the analyst is interested in simply describing SES-related inequality 
in health or health care, then statistical modeling issues are irrelevant. The ana-
lyst simply wants to describe how health varies with SES, conditional on other fac-
tors such as age, gender, and so on. Ordinary least squares (OLS) can be used to 
describe how the mean of health varies with SES, conditional on whatever factors 
the analyst wants to control for. The more variables the analyst controls for, the 
fi ner is the description of the relation between health and SES. Issues of omitted 
variable bias and endogeneity are not relevant. Of course, such simplicity comes 
at a price. The analyst cannot place any causal interpretation on the estimates. A 
signifi cant OLS coeffi cient does not mean that SES has an effect on health, even if 
the analyst controls for a multitude of observable covariates. It simply means that 
health is observed to vary as SES varies. There is inequality. 
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The standardization and the decomposition methods covered in chapters 5 
and 15 and in chapters 12 and 13, respectively, are examples of exploratory, or even 
explanatory, but still descriptive analysis. They are used to describe the distribu-
tion, primarily the mean, of health or health care conditional on SES, age, gender, 
and so forth.

Causal models

If the analyst wants to draw causal inferences, then the approach has to move 
from a descriptive one to a modeling approach. Causal relationships can arise 
through a number of pathways. Models and estimators vary in sophistica-
tion with the degree of detail of the causal relationship the analyst is aiming to 
uncover. For example, maternal education can affect child health either directly, 
through knowledge of healthy behavior, or indirectly, through preferences for 
child health. If the analyst is interested simply in whether educating women is 
an effective means of raising child health, irrespective of the mechanism through 
which it works, then the statistical model, and estimator, can be quite simple. A 
reduced form approach (see below) is adequate. However, if the analyst wants 
to establish whether educated mothers are better able to raise healthy children, 
abstracting from preference effects, then the model, as well as the methods, has 
to be more sophisticated. A structural model (see below) must be developed and 
estimated. 

The household production model (Becker 1964, 1965) provides a useful frame-
work for causal analysis of health variations (Grossman 1972a, 1972b; Rosenzweig 
and Schultz 1982, 1983; Schultz 1984; Wagstaff 1986). According to this approach, 
health, which is of intrinsic value, is “produced” by the household through the 
input of time and goods, such as food and medical care. The household selects such 
inputs given its members’ physiological predispositions to good/bad health. These 
health endowments are observable to the household but not to the analyst. As a 
consequence, regressing outcomes, such as health, on inputs, such as medical care, 
will not render unbiased estimates of the causal impact of the latter because both 
the inputs and the outcomes refl ect the values of the health endowments. 

The most popular empirical strategy is to estimate reduced form demand rela-
tions. That is, to regress health outcomes on (exogenous) determinants of health 
inputs, for example, medical care prices. The resulting coeffi cients refl ect both 
“technological” relationships between inputs and outcomes, and household prefer-
ences for health relative to other “goods.” From such a reduced form health func-
tion it is not possible to conclude anything about the technological impact of a vari-
able on health. For example, the relationship between female wage rates and child 
health refl ects both the incentive effects of the wage on household time allocation 
and the effect of time use on child health. Nevertheless, for certain policy ques-
tions, reduced form estimation is appropriate. For example, say the analyst wants 
to know how population health will respond to an increased availability of medical 
care facilities, taking account both of the technological impact of medical care on 
health and the behavioral response with respect to utilization. Then, estimation of 
the reduced form correlation of area variations in medical facilities with individual 
levels of health is adequate. 
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If estimates of the health production technology are desired, then the prob-
lems of omitted variable bias and unobservable heterogeneity must be confronted. 
For example, regressing health on health care use, while omitting education, will 
give a biased estimate of the impact of health care in the likely instance that it is 
correlated with education. Resolution of the problem demands a suffi ciently rich 
data set. The problem of heterogeneity bias arises from the unobservable health 
endowment, which induces correlation between the observable and unobservable 
components of a model of health determination. With cross-section data, correc-
tion of the resulting bias requires the availability of instruments, that is, variables 
that affect the health inputs but, conditional on these, not health itself. Appropri-
ate instruments vary with the specifi c inputs being considered. At a general level, 
instruments used in the estimation of health production functions commonly come 
from geographic variation in market prices, from family endowments, for example, 
land rights, and from characteristics of public health programs at the regional level 
(Rosenzweig and Schultz 1983). 

Instrumental variable (IV) estimation is fraught with danger. It is easy to claim 
that an endogenous regressor has been instrumented. It is somewhat more diffi cult 
to fi nd a valid instrument. IV estimation should therefore be subjected to stringent 
testing (Bound, Jaeger, and Baker 1995; Staiger and Stock 1997). The variables pro-
posed as instruments should be signifi cant in a reduced form for the health input. 
Further, overidentifi cation tests should be used to check whether exclusion of the 
proposed instruments from the health equation is justifi ed. 

Panel data have two important advantages with respect to estimation of health 
production functions. First, with data on the same individuals at different points in 
time, it is easier to account for the effect of unobservable health endowments, which 
generate much of the endogeneity problem. For example, the fi xed effects estima-
tor (see below) eliminates the time invariant unobservable effects and is consistent. 
The second important advantage of panel data is that they allow the time dynamics 
of health relationships to be investigated. The determination of health is essentially 
a dynamic process; health today refl ects experiences of the past. For causal analysis 
of the determination of health, panel data are top priority.

Estimation and inference with complex survey data

Most surveys used for analysis of health sector inequalities in developing coun-
tries have complex sample designs. Typically, there is random sampling at some 
level or levels but there might be separate sampling from population subgroups 
(strata), groups of observations (clusters) may not be sampled independently, and 
there might be oversampling of certain groups. These three basic features of com-
plex sample design—stratifi cation, cluster sampling, and unequal selection prob-
abilities—were introduced in chapter 2, in which we briefl y discussed how the 
sample design should be taken into account in conducting inference with respect 
to population means. We now consider whether and how sample design should be 
taken into account in conducting multivariate analyses. A related issue, which we 
consider, is that of area effects—controlling for all observable determinants, area of 
residence exerts an independent effect on health. Such effects are characteristics of 
the population itself, but their sample importance depends on the sample design.
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Stratifi ed sampling

Samples can be stratifi ed in a variety of ways. The design most typically employed 
in household surveys undertaken in developing countries, for example, the Living 
Standards Measurement Surveys, is standard stratifi ed sampling. The population is 
divided into a relatively small number of strata—for example, urban/rural or large 
geographic regions. A random sample, of predetermined size, is selected indepen-
dently from each of these strata. The sample proportions accounted for by each strata 
may or may not correspond to population proportions. In the case that they do not, the 
overall sample is not representative of the population and the issue of sample weights 
arises. This is a separate issue from stratifi cation and is considered as such below.

If population means differ across strata, then predetermination of strata sample 
sizes reduces the sampling variance of estimators of these means. As a result, stan-
dard errors on estimates of population means, and other descriptive statistics, should 
be adjusted downward. In chapter 2, we demonstrated how to do this using the spe-
cial routines for survey data available in Stata. It turns out that adjustment is not nec-
essary in (nondescriptive) regression analysis and a wide variety of other multivariate 
modeling approaches, provided stratifi cation is based on variables that are exogenous 
within the model (Wooldridge 2001, 2002). For example, say a sample stratifi ed by 
urban/rural is used to estimate the determinants of child nutritional status, measured 
by height-for-age z-score. Provided, conditional on the regressors, unobservable deter-
minants of height-for-age and of city dwelling are uncorrelated, the OLS estimator, 
for example, is consistent and effi cient, and the usual standard errors are valid. In the 
likely presence of heteroscedasticity, the analyst would want to make the standard 
errors robust, but that is another issue. If stratifi cation is based on an endogenous vari-
able, however, then standard errors should be adjusted (Wooldridge 2002). 

So, the need to adjust standard errors for stratifi cation is situation specifi c. In 
practice, relative to simple standard errors, adjusting for stratifi cation may infl ate 
the standard errors. But with survey data, standard errors robust to heteroscedas-
ticity, and possibly clustering (see below), will be required. Relative to those adjust-
ments, the magnitude of that for stratifi cation is usually modest and normally 
downward (see box 10.1). So, a conservative strategy is not to make any adjustment. 
If stratifi cation is exogenous, there is no need for adjustment and, if endogenous, 
the adjustment will normally increase statistical signifi cance.

It is often sensible to allow for intercept, and possibly slope, differences with 
respect to factors on which the sample is stratifi ed. But this is in response to differ-
ences that exist in the population itself, not to the stratifi ed design of the sample. 
For example, in many cases it is sensible to include an urban/rural dummy and to 
interact this with other regressors, to allow for differences in both the mean and 
responses between urban and rural locations, irrespective of whether the sample is 
stratifi ed by urban/rural.

Computation Stata is the best package available for handling survey design 
issues. For the example presented in Box 10.1, OLS estimates with stratifi cation 
adjusted SEs were obtained from the following:

svyset , strata(region)
svy, subpop(child): regr depvar varlist

where strata(region) instructs that the sample be stratifi ed on the variable 
region, depvar denotes the dependent variable (height-for-age z-score [*–100] in 



Box 10.1 Standard Error Adjustment for Stratifi cation Regression Analysis 
of Child Nutritional Status in Vietnam

In the table below we present OLS coeffi cients from a regression of height-for-age z-
scores (see chapter 4 ) using a sample of Vietnamese children under 10 years of age. The 
data are from the 1998 Vietnam Living Standards Survey (VLSS), which was stratifi ed 
by 10 regions. The specifi cation of the regression is based on that used by Wagstaff, 
van Doorslaer, and Watanabe (2003) (see also chapter 13). The dependent variable is 
actually the negative of the z-score (multiplied by 100), such that a positive coeffi cient 
indicates a negative correlation with height.

In addition to the OLS point estimates, we present standard errors (SEs) calculated with 
various degrees of adjustment. Relative to simple OLS SEs (column 2), adjustment for strati-
fi cation alone (column 3) tends to infl ate the SEs appreciably, but not dramatically. In some 
cases, the adjustment is slightly downward. In no case does the adjustment change the level 
of signifi cance of the coeffi cient. In this example, making the SEs robust to heteroscedastic-
ity of general form (column 4) has a very similar effect to that of adjusting for stratifi cation. 
Besides stratifi cation, the VLSS has a cluster sample design. Adjusting SEs for cluster sam-
pling but not stratifi cation (column 5) has a greater impact than stratifi cation adjustment. 
In all cases, as expected, the adjustment is upward and in two cases it actually changes 
the level of signifi cance. Finally, we adjust for both stratifi cation and clustering (column 6). 
Comparing columns 5 and 6, it is apparent, for this example, that given adjustment for clus-
tering, the marginal impact of stratifi cation adjustment is small. In most cases, but not all, 
this marginal adjustment is downward. In no case does adjustment for stratifi cation change 
the level of signifi cance relative to that obtained by adjusting for clustering alone.

For this example, adjusting standard errors for clustering appears to be more 
important than adjustment for stratifi cation. Although care must be taken not to draw 
general conclusions from an example, this is consistent with what is generally found in 
empirical work.

OLS analysis of height-for-age z-scores (*–100), Vietnam 1998 (children <10 years)

 Standard errors

   Strati-   Strat. & 
 Co- Un- fi cation  Hetero.  Cluster  cluster
 effi cient adjusted adjusted  robust  adjusted  adj. 

Child’s age  3.70***  0.1986  0.2466  0.2470  0.2885  0.2872
(months)  

Child’s age  –2.38***  0.1554  0.1755  0.1758  0.1966  0.1957 
squared (/100)

Child is male  12.31***  3.2927  3.2708  3.2792  3.3649  3.2844 

(log) hhold.  –37.85***  3.9843  4.1046  4.1116  5.4035  5.4582
consumption per capita 

Safe drinking water –7.43  4.9533  4.8300  4.8441  9.1538  9.2098 

Satisfactory sanitation –15.53***  5.1009  4.8199  4.8326  6.1202 6.0937

Years of schooling  –0.87*  0.4804  0.4770  0.4786  0.7302 0.7188
of household head

Mother has primary  –2.33  4.0598  4.1309  4.1397  6.1913  6.2438  
school diploma

Sample size  5218

Note: Dependent variable is negative of z-score, multiplied by 100. Bold indicates a change 
in signifi cance level relative to that using unadjusted standard errors. Regression also contains 
region dummies at the level of stratifi cation. ***, ** and * indicate 1%, 5% and 10% signifi cance 
according to unadjusted standard errors. 

Source: Authors.
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the example), varlist is a list of regressors, and subpop(child) requests that the 
model be estimated for children (child=1) only. Restricting the sample to children 
and then estimating the model would not give the correct (stratifi cation-adjusted) 
SEs. Computation for cluster sample adjustment is given below.

Cluster samples

Cluster samples arise from a two-stage (or more) sampling process. In the fi rst 
stage, groups (clusters) of households are randomly sampled from either the popu-
lation or the strata. Typically, these clusters are villages or neighborhoods of towns 
and cities. In the second stage, households are randomly sampled from each of 
the selected clusters. An important distinction from stratifi cation is that strata are 
selected deterministically, whereas clusters are selected randomly. A further dif-
ference is that typically strata are few in number and contain many observations, 
whereas clusters are large in number and contain relatively few observations. 

As a result of this design, observations are not independent within clusters, 
although most probably they are across clusters. There is likely to be more homoge-
neity within clusters than there is across the population as a whole. Within clusters, 
correlation of both observable and unobservable factors across households can be 
expected. Although these correlations exist in the population, the sample design 
increases their sample presence relative to that of a simple random sample. Con-
sequences and remedies depend on the nature of the within-cluster correlation. 
Much of the analysis is analogous to that of unobservable individual effects in a 
panel data setting.

Case 1: Exogenous cluster effects Consider the following model: 

(10.1) y E Eic ic c ic ic ic c ic= + + [ ]= [ ]=X Xβ λ ε ε λ ε, | , ,0

where i and c are household (individual) and cluster indicators, respectively; Xic  is a 
vector of regressors; λc  are cluster effects; and εic idiosyncratic disturbances. If we 
assume that the cluster effects are independent of the regressors E Ec ic cλ λ|X[ ]= [ ]( ), 
then so is the composite error uic c ic= +( )λ ε . This is the random effects model. 

Conventional point estimators, for example, OLS, probit, and so on, depending 
on the nature of the dependent variable, are consistent, but ineffi ciency arises from 
the cluster-induced correlation in the composite errors which, in addition, requires 
adjustment of the standard errors. One option is to accept ineffi ciency and simply 
adjust the standard errors. In Stata, this is easily implemented through the option 
cluster(varname), where varname defi nes the clusters. This option, which is 
available for most estimators, will adjust both for within-cluster correlation and for 
heteroscedasticity of unknown form.

An alternative strategy is to pursue effi ciency by estimating the within-cluster 
correlation and taking account of this in estimation of the model parameters. In 
the linear case, for example, the analyst would use generalized least squares (GLS). 
A Lagrange multiplier test can be used to test the null that the cluster effects are 
insignifi cant and OLS is effi cient (Wooldridge 2002). In the case of a binary discrete 
dependent variable, the analyst can estimate the random effects probit. 

Case 2: Endogenous cluster effects The model is equation 10.1, but we 
relax the assumption of independence between the cluster effects and the regres-
sors. That is, we allow E Ec ic cλ λ|X[ ]≠ [ ]( ). This is the fi xed effects model. 

a
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For example, in a regression of individual health on health service utilization, 
we would expect the latter to be correlated with the unobservable cluster-specifi c 
quality of those services. In instances in which there is such dependence, regres-
sors are correlated with the composite error and standard estimators are inconsis-
tent. The analyst must purge the cluster effects from the composite error. In a lin-
ear context, either include cluster dummies or, equivalently, transform the data by 
taking differences from within cluster means (i.e., the within-groups estimator). In 
a binary discrete choice context, the analyst can use the fi xed effects logit estima-
tor (Wooldridge 2002) (see chapter 11). Once the cluster effects have been purged 
from the composite error, there is no need to adjust standard errors for clustering 
(providing the linear specifi cation of the cluster effects is correct). Adjustment for 
heteroscedasticity is likely to be a good idea. 

The analyst can choose between the random and fi xed effects models by refer-
ence to a Hausman test of the null of independence between the cluster effects and 
the regressors (Wooldridge 2002). 

Box 10.2 Taking Cluster Sampling into Account in Regression Analysis 
of Child Nutritional Status in Vietnam

We continue with an examination of height-for-age z-scores of Vietnamese children 
using the 1998 VLSS, which has a cluster sample design. Cluster samples were actually 
drawn at two levels in this survey. At the fi rst level, within each stratum a random sam-
ple of communes was drawn with probability of selection proportional to commune 
population size. Communes therefore represent the primary sampling units. Within 
each of the 194 selected communes, two villages/blocks were randomly selected with 
selection probabilities again proportional to population size. Finally, within each vil-
lage/block a random sample of 20 households was selected. With this sample design, 
clusters could be defi ned at the level of the commune, village/block, or both. For sim-
plicity, we will defi ne clusters at the commune level. 

We take three approaches to the cluster sample issue: OLS with standard errors 
adjusted for within-cluster correlation, random effects, and fi xed effects. In each case, 
standard errors are made robust to heteroscedasticity of general form. The results of 
the respective z-score regressions are given in the table below. 

Comparing the point estimates, it is apparent that the choice of estimator makes 
little difference for regressors that are clearly individual specifi c, but there is greater 
sensitivity in estimates for regressors that can be expected to display stronger within-
commune correlation. So, for example, the point estimates for age and gender are near 
constant across the estimators. The estimate for household consumption is more sensi-
tive, the effect weakening as we move from OLS, which takes no account of commune 
effects in the point estimates, to fi xed effects, which purge the commune effects. This 
pattern is even more pronounced for indicators of safety of drinking water and sanita-
tion, which can be expected to display fairly limited within-commune variation. 

In general, standard errors are smaller for random and fi xed effects. This is expected 
because these methods take into account the cluster effects in the (point) estimation 
and do not have to infl ate the standard errors to allow for these correlated effects. In 
this example, however, the choice of estimator makes very little difference to levels of 
signifi cance, refl ecting the strength of the effect of some of the regressors. 

The Lagrange multiplier test on the random effects model confi rms that commune 
effects are, indeed, important. The Hausman test rejects the assumption of zero correla-
tion between the commune effects and the regressors, indicating the superiority of the 
fi xed effects estimator in this case.
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Computation Results such as those in box 10.2 can be generated in Stata as 
follows. For OLS with cluster corrected SEs,

svyset commune
svy, subpop(child): regr depvar varlist

where the svyset command instructs that clusters are defi ned by the variable 
commune. If the analysis were not restricted to part of the sample, the appropriate 
cluster corrected standard errors could be obtained from the following:

regr depvar varlist, cluster(commune)

To adjust SEs for both clustering and stratifi cation, simply set the survey param-
eters appropriately,

svyset commune, strata(region)

and then run the svy: regr command as above. This was used to generate the 
SEs in the fi nal column of the table in box 10.1. We do not adjust OLS SEs in the table 
in box 10.2 for stratifi cation because the random and fi xed effects estimators do not 
allow for that. Random effects estimates are obtained most easily from Stata’s lin-
ear panel data estimator, 

xtreg depvar varlist, re i(commune) 

Box 10.2 continued Regression Analysis of Height-for-Age z-Scores (*-100), 
Vietnam 1998 (children <10 years)

 OLS  Random effects  Fixed effects 

  Cluster   Robust   Robust 
 Coeff.  adjusted SE  Coeff.  SE  Coeff.  SE

Child’s age (months) 3.72***  0.2917  3.74***  0.2451  3.78***  0.2430

Child’s age squared (1100) –2.40***  0.1987  –2.40***  0.1742  –2.44***  0.1732

Child is male 12.26***  3.4527  12.19***  3.2394  12.97***  3.2443 

(log) hhold.  –50.93*** 5.1149  –43.17***  4.0778  –30.37***  4.6090
consumption p.c. 

Safe drinking water –12.55 8.6438  –7.93  4.8984  –2.75  5.4247 

Satisfactory sanitation –22.90*** 5.6974  –19.39***  4.8446  –9.77**  4.9364 

Years of schooling  –0.39  0.6628  –0.33  0.4828 –0.55  0.5081 
of HoH

Mother has primary  2.67  5.3187  1.71  4.1140  1.74  4.3186
school diploma 

Intercept  445.00***  44.5600  377.01***  32.1941  276.19***  35.0991

Sample size 5,218 R2  0.1527  B-P LM 485.84 (0.000) 

    Hausman  50.54 (0.000) 

Note: Dependent variable is negative of z-score, multiplied by 100. 
SE = standard error, Robust SE-robust to general heteroskedasticity.
B-P LM = Breusch-Pagan Lagrange Multiplier test of signifi cance of commune effects (p-value).
Hausman = Hausman test of random versus fi xed effects (p-value).
***, ** & * indicate signifi cance at 1%, 5% & 10%, respectively.
Source: Authors.
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where i(commune)instructs to allow for common effects within each category of 
the variable commune. The Breusch-Pagan test statistic is obtained by following 
the command above with xttest0. To obtain (heteroskedasticity) robust SEs, as in 
the example, the analyst can implement the random effects (GLS) estimator through 
OLS on transformed data and request robust SEs. First, run the random effects esti-
mator as above, and save the estimates of the variances of the error components,

scalar defi ne sigma_e=e(sigma_e)^2
scalar defi ne sigma_u=e(sigma_u)^2

Next calculate the variable that will be used to transform the data,

sort commune
by commune: gen T=_N 
gen theta=1-sqrt(sigma_e/(sigma_e +(T*sigma_u)))

where the fi rst two command lines generate a variable indicating the number of 
observations within each commune, and the third line gives the transformation 
variable. Now generate the quasi mean deviations (i.e., deviations from the trans-
formed mean) for the dependent variable and each regressor,

local vbls “depvar varlist”
foreach var of local vbls {
 by commune: egen m_`var’=mean(`var’)
 gen t_`var’=`var’-theta*m_`var’
}

Generate the variable from which the intercept will be estimated and run OLS,

gen intercept=1-theta
local vars “t_depvar t_var1 t_var2...  .”
regr `vars’ intercept, noconstant robust

where the local vars contains the names of the transformed dependent variable 
and the regressors, noconstant requests that the regression be estimated without 
a constant, and robust requests heteroscedasticity robust SEs.

Fixed effects estimates can be obtained from the panel data command:

xtreg depvar varlist, fe i(commune) 

Or to obtain the same point estimates but robust SEs, use the following: 

areg depvar varlist, absorb(commune) robust 

which requests OLS on deviations from commune specifi c means, that is, the 
within-groups or fi xed-effects estimator.

The Hausman test statistic can be computed by the following:

xtreg depvar varlist, fe i(commune)
est store fi xed
xtreg depvar varlist, re i(commune)
hausman fi xed

Explaining community effects

The strategies outlined above for dealing with cluster samples are appropriate 
when the analyst is interested exclusively in the determinants of health/health care 
at the individual level. In this case, the cluster sample design is a problem to be 
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overcome. But cluster, or community, effects can be more than nuisance parameters. 
With respect to health inequality, for example, area variations in health, and their 
determinants, are of genuine interest. Not least because implementation of public 
health policies at the community, rather than the individual, level is often more fea-
sible. In this case, a cluster sample design is an advantage rather than a problem. It 
facilitates examination of cross-community differences in health and their determi-
nants, particularly if the household survey is accompanied by a community-level 
survey providing information on characteristics of the community.

Options for the analysis of community effects from individual-level data depend 
on whether the effects are exogenous or endogenous.

Case 1: Exogenous cluster (community) effects In this case, the analyst 
can explore the determinants of area variation in health outcomes or utilization by 
including community-level variables, if available, in the model. Defi ne λ γ λc c c= +Z *, 
where Zc  are observable community-level factors, for example, health care facili-
ties and personnel, quality of water provision and sewage, prices, and so forth and 
substitute this defi nition into equation 10.1. The (rewritten) model is as follows:

(10.2) y E Eic ic c c ic ic ic c c= + + + ⎡⎣ ⎤⎦ =X Z X Zβ γ λ ε ε λ ε* *, | , , iic[ ]= 0.

To maintain the assumption of exogenous community effects, and therefore con-
sistency (but not effi ciency) of standard estimators, we now need the unobservable 
community effects (λc

*) to be independent of both the individual- and community-
level regressors (i.e., E X Z Ec ic c c| ,* *λ λ⎡⎣ ⎤⎦ = ⎡⎣ ⎤⎦) (Wooldridge 2002). This is likely to be 
a stronger assumption than that placed on model 10.1 above. Assuming that the 
observable community factors capture all of the community effect, (λc c* ,= ∀0 ) is 
even stronger. Excepting the latter restrictive case, standard errors still have to 
be adjusted (upward) for correlation induced by the (unobservable) community 
effects. However, the effi ciency loss from employing OLS, for example, in this set-
ting may not be large (Deaton 1997).

This random effects model is known as the hierarchical model in some fi elds 
(see, e.g., Rice and Jones [1997]). Although the models are equivalent, the hierar-
chical approach places more emphasis on decomposition of the overall variance 
into that arising at the individual and the community level. This approach is par-
ticularly useful in cases in which the analyst wants to focus on such a distinction 
between individual- and community-level effects. 

Case 2: Endogenous cluster (community) effects In cases in which the 
(unobservable) community effects are correlated with individual-level regressors, 
it is not possible to include community-level variables in a model to be estimated 
from a single cross section. With a dummy variable approach, the community vari-
ables would be perfectly correlated with the community dummies. With a fi xed-
effects approach, community variables would be wiped out of the model along with 
the unobservable community effects. If one has panel data, then these problems are 
avoided provided there is suffi cient across-time variation in the community-level 
variables. With a single cross section, a feasible two-stage approach in a linear con-
text is to estimate a fi xed-effects model, obtain estimates of the community effects, 
and then regress these on community-level variables. In the fi rst stage, the bias aris-
ing from the community effects is removed from the individual-level analysis of, 
say, health determination. In the second stage, sources of community variation in 
health are examined. 
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In box 10.3 we continue with the example of child nutritional status in Vietnam, 
examining the sources of community-level variation, assuming in turn exogenous 
and endogenous community effects.

Box 10.3 Explaining Community-Level Variation in Child Nutritional Status in Vietnam

In box 10.2 we saw that commune effects are an important source of variation in height-
for-age z-scores of Vietnamese children. The VLSS offers the opportunity to uncover 
factors underlying these commune effects through the examination of data from com-
mune-level surveys that accompanied, and can be linked to, the household survey data. 
For demonstration purposes, we limit attention to the characteristics of commune health 
centers (CHCs). The analysis is necessarily restricted to children living in rural areas 
and small towns because the commune surveys were conducted in those areas only.

Again we compare OLS, random effects, and fi xed effects. In the case of OLS and 
random effects, the estimates are obtained from entering the CHC characteristics 
directly into the individual-level regressions. We present, in the table below, the esti-
mates for the CHC regressors only. Estimates for the individual-level regressors are 
similar to those given in the table in box 10.2. For the fi xed-effects model, we take the 
two-stage approach outlined above. In the table, we present results from the second 
stage regression of the estimated commune effects on the CHC characteristics. The fi rst 
stage estimates are similar to those in the table in box 10.2.

The results indicate a lower prevalence of stunting in communes in which the CHC 
has electricity, a sanitary toilet and, at marginal signifi cance, a child growth chart. The 
number of inpatient beds available in a CHC and, at lower signifi cance, the employ-
ment of a doctor is positively correlated with the prevalence of stunting. These latter 
results may refl ect the targeting on resources in the communes of greatest need. 

Analysis of Commune-Level Variation in Height-for-Age z-Scores (*–100), Rural 
Vietnam 1998 (children <10 years)

    2nd-stage
  OLS  Random effects  fi xed effects 

Commune health  Cluster   Robust 
center vbls.  Coeff.  adj. SE  Coeff.  SE  Coeff.  SE 

Vitamin A available  –10.11  6.6530  –6.86143  6.5927  –8.27114  6.7506 
≥ 1/2 time

Has electricity  –38.79***  11.4558  –50.56***  12.1861 –45.34***  10.7991 

Has clean water source  9.57  7.6534  7.2341  8.4061  7.0070  8.7610 

Has sanitary toilet –27.53***  7.0928  –24.50***  7.6694  –24.30***  7.8715 

Has child growth chart  –13.85*  7.2046  –10.2623  7.5879  –11.732  7.6292 

Number of inpatient beds  1.52*  0.8298  2.12**  0.9242  2.09**  0.9744 

Has a doctor  11.39  6.9765  9.6255  7.1834  10.1856  7.5207 

Intercept 371.89***  48.8784  344.71***  41.5639  279.13***  41.6264 

Sample size          4,099       R2   0.1313  B-P LM      248.42

   (0.0000)

Note: Dependent variable is negative of z-score, multiplied by 100. OLS & random effects = 
Coeffi cients on commune-level regressors only are presented. 2nd stage fi xed effects = Estimated 
commune effects from fi xed effects regressed on commune vbls.  

SE = standard error, robust SE = robust to general heteroskedasticity.
B-P LM = Breusch-Pagan Lagrange Multiplier test of signifi cance of community effects (p-value).
***, ** and * indicate signifi cance at 1%, 5% and 10%, respectively.
Source: Authors.
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Computation OLS and random effects estimates and standard errors can be 
generated exactly as above, with the inclusion of community-level regressors. The 
two-stage fi xed-effects approach can be implemented in Stata by fi rst running the 
linear (fi xed effects) panel estimator and saving the predicted commune effects:

xtreg depvar varlist, fe i(commune)
predict ce, u

where ce is the variable name given to the predicted commune effects, u. OLS 
regression of these commune effects on commune-level variables (varlist2) is 
most easily implemented by using the between-groups panel estimator:

xtreg ce varlist2, be i(commune) 

Sample weights

The probability of observing an individual in a survey may differ from the probabil-
ity that the individual is randomly selected from the population. There are a num-
ber of reasons for this. The survey may be stratifi ed, with strata sample proportions 
differing from respective population proportions. For example, there may be overs-
ampling of the urban population. Besides sample design, differential nonresponse 
will lead to a sample that is not representative of the population. For those reasons, 
survey data typically come with a set of sample weights that, for each observation, 
indicate the (inverse of the) probability of being a sample member. In a standard 
stratifi ed sample with differential sampling by strata, weights or expansion factors 
are given by the ratio of the population size of each stratum to its sample size. 

Sample weights must be applied to obtain unbiased estimates of population 
means, concentration indices, and so forth and correct standard errors for these esti-
mates. Application of the weights allows for the fact that observations with lower 
sample probabilities represent a greater number of (similar) individuals in the pop-
ulation. With respect to multivariate analysis, the case for applying sample weights 
is less clear-cut. In part, the appropriateness of weighting depends on the objective 
of the analysis. As we stressed at the beginning of this chapter, appropriate meth-
ods depend on the purpose of the analysis. If regression is being used simply as a 
descriptive device, and not for estimation of behavioral parameters, then weights 
should be applied (Deaton 1997). The regression function describes the means of 
one variable conditional on others. Application of sample weights will ensure that 
the conditional means estimated are those that would have been estimated from a 
simple random sample of the population. In this case, weights are applied for the 
same reason they are used in univariate analysis. For example, in standardization 
exercises (see chapters 5 and 15), regression is used simply to obtain conditional 
means, and it would be appropriate to apply sample weights.

If the purpose of the analysis is more ambitious—to uncover causal relation-
ships—then the crucial factor determining whether weights need to be applied in 
estimating the model parameters is the source of differences between sample and 
population proportions. If proportions differ because of selection on factors that 
are exogenous within the model under consideration, then there is no need to apply 
weights. Unweighted estimators are consistent and more effi cient than weighted 
counterparts (Wooldridge 2002). Usual or, in the presence of heteroscedasticity, 
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robust standard errors are valid. However, if selection is on endogenous factors, 
then a weighted estimator is required for consistency (Wooldridge 2002). In the case 
of the linear model, for example, weighted least squares could be used with the data 
weighted by the inverse of sample probabilities. If the sample weights derive from 
stratifi cation with differential sampling by strata, then standard errors need to be 
calculated taking account of both the weights and the stratifi cation. Alternatively, 
if there are sample weights but not stratifi cation, then (robust) standard errors are 
calculated by applying the usual formula to the weighted data.

So, as with sample stratifi cation, the need to take account of sample weights in 
estimation is situation specifi c. Consider a model of health determination to be esti-
mated from a survey that oversamples the urban population. If, conditional on all 
regressors, unobservable determinants of health are uncorrelated with city dwell-
ing, then there is no need to apply weights. Conditioning on an urban dummy is suf-
fi cient. In this example, the exogeneity assumption might be considered reasonably 
weak, although its validity would be challenged if migration were strongly infl u-
enced by health status. If, however, there were differential sampling by health itself, 
say the sick were oversampled, then sample weights would need to be applied. 

The discussion above assumes parameter homogeneity across the differentially 
sampled groups. There might be different (conditional) group means, but that is eas-
ily dealt with through the inclusion of dummy variables. A more serious problem is 
differences in slope parameters across groups. Consider the following model:

(10.3) yis is s is= +X β ε

where i and s, respectively, indicate individual and group, for example, urban/rural, 
gender, ethnicity, and so on, and the parameter vector as is indexed on s, indicating 
parameter heterogeneity across groups. If differences in parameters across groups 
are of inherent interest, then the analyst can estimate either a separate model for 
each group or a single model with dummies for each group and their interactions 
with other regressors. The former is more general. In both cases, parameter homo-
geneity can be tested by standard methods.

For various reasons, the analyst might want an estimate of the average effect

across the population. Such an average might be defi ned as follows:
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that is, the weighted average of the group-specifi c parameters with weights pro-

vided by the population group proportions 
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(Deaton 1997). If degrees of free-

dom are not a problem, this parameter can be consistently estimated by applying 
OLS to each sector to obtain estimates of the sector-specifi c parameters, âs, and 
taking the population-weighted average of these. For degrees of freedom rea-
sons or otherwise, it is often preferred to estimate the average parameter directly 
from one regression. In the case in which sample group proportions do not cor-
respond to population proportions, it might be anticipated that unweighted OLS 
on the whole sample will not be consistent for the average parameter defi ned. 
That is correct. It is reasonable to ask whether sample weights can solve the prob-
lem. The answer is “no.” Weighted regression will give an estimate that corre-
sponds to that which would be obtained from a simple random sample, but that 
is not consistent for the population average parameter, apart from the extreme 
case in which regressor values are identical across all groups (Deaton 1997).

a a
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The issue here is parameter heterogeneity, which exists in the population, and 
is not simply a feature of sample design. Sample weights cannot be used to address 
an issue that arises from the population itself. 

Sensitivity of estimates and their standard errors to the application of weights is 
examined in box 10.4.

Further reading

Deaton (1997) is a wonderfully useful guide to the analysis of survey data. Woold-
ridge (2002) and Cameron and Trivedi (2005) are both excellent, comprehensive text-
books covering the relevant econometric theory. 

Box 10.4  Applying Sample Weights in Regression Analysis 
of Child Nutritional Status in Vietnam

We reproduce the analysis of box 10.2, but with sample weights applied to all estima-
tors. One other difference is that the OLS standard errors are adjusted for stratifi cation 
because, within a modeling approach, the logic for applying sample weights and for 
adjusting for stratifi cation is the same. That is, selection on an endogenous variable. 

By comparing the estimates presented in the table below with those given in the 
table in box 10.2, it is apparent that the application of sample weights makes very lit-
tle difference to the results. A possible explanation is that the application of sample 
weights is not necessary in this particular example. That is, differential sampling is 
exogenous, and so the unweighted estimators are consistent. 

Weighted Regression Analyses of Height-for-Age z-Scores
Vietnam 1998 (children <10 years)

 OLS  Random effects  Fixed effects 

  Adjusted   Robust   Robust
 Coeff.  SE  Coeff.  SE  Coeff.  SE

Child's age (months)  3.90***  0.3218  3.90***  0.2652  3.91***  0.2642 

Child's age squared (/100)  –2.51***  0.2206  –2.50***  0.1875  –2.51***  0.1875 

Child is male  14.86***  3.5718  14.56***  3.3595  14.89***  3.3731 

(log) hhold. 
consumption p.c.  –50.14***  5.5131  –40.67***  4.3511  –26.05***  5.0196 

Safe drinking water  –12.16  10.2770  –6.92  5.1624  –2.07  5.6079 

Satifactory sanitation  –22.01***  5.9503  –19.81***  5.3653  –10.48*  5.4439 

Years of schooling of HoH  –0.21  0.7355  –0.15  0.5122  –0.42  0.5363 

Mother has primary 
school diploma  3.62  5.6510  3.04  4.2925  2.19  4.4958 

Intercept 428.15***  48.9827  347.47***  34.9686  236.12***  38.5646 

Sample size  5,218 R2  0.1496  R2  0.4320  R2  0.2457

Note: Dependent variable is negative of z-score, multiplied by 100. 
Adjusted SE = standard error adjusted for clustering and stratifi cation and robust to 

heteroskedasticity. 
Robust SE = standard error robust to general heteroskedasticity.
***, ** and * indicate signifi cance at 1%, 5% and 10%, respectively.
Source: Authors.
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