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The Climate-Poverty-Development Nexus
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Vulnerability to Climate Change by Human
Development Index
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The issue: a long term commitment to
infrastructuredevelopment..

PIDA long term targets

Target by

2040

Modern highways 37,300 km

Hydroelectric power generation 54,150 MW

Interconnecting power lines 16,500 km

New water storaﬁe caiaciti 2OI101 hmi




..In the context of a very different
climate in the future..

Data refer to the;olta river basin
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..with increasing uncertainty
on direction and magnitude of change
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Overall: Strengthen the analytical base for investments in

Africa’ s infrastructure under a future uncertain climate;

specifically:

1. Estimate the impacts of climate change on the performance of a
subset of infrastructure over a range of climate scenarios

2. Develop and test a framework for the planning and design of
infrastructure investment that can be “robust” over a wide range of
climate outcomes;

3. Enhance the “investment readiness” of African countries to use
climate finance to increase climate resilience of infrastructure



1.

Climate change has large effects on infrastructure
performance; ignoring it may lead to significant
“regrets”

Despite uncertainty, it is possible to plan
infrastructure development so as to reduce regrets

There will be cost increases and cost savings; the
benefits in terms of reduced risk outweigh the cost
increase

Climate resilience is a new challenge, but is
manageable



Scope of the water and energy analysis




Two tracks of analysis

» Track 1: coarser scale 4 3
(basins and power pools) v, 5
o Emphasis on planning,
trade-offs among policy
objectives

» Track 2: specific
investments scale

o Emphasis on project
design options

$ »

CCSM3 PCM1




The study team
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US/ Europe experts Africa experts
Stockholm Environment Instit./ US - Nile Basin Initiative (Uganda)
Rand Corporation - International Institute for Water
Royal Institute of Technology — and the Environment (Burkina
Sweden Faso)
Massachusetts Institute of - Rhodes University (South Africa)
Technology - University of Cape Town (South
University of Massachusetts Africa)

Industrial Economics, Inc.




The approach in 4 steps

A. Reference scenario: by 2030, what infrastructure,
where, when, what performance (MW, Hectares, etc.)

B. Impacts: how performance will be affected under
100+ climate scenarios (no adaptation)

C. Perfect foresight adaptation: assume you knew in
advance the climate, how would you modify plans ex-
ante

D. Robust adaptation: what are the planning choices
that deliver performance in as many climate scenarios
as possible




The reference scenario:
a program of msive investment
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Impacts




Large impacts on physical performance..

Changes in physical performance of hydropower and irrigation under climate change (2015 to 2050)
in the Congo, Orange and Zambezi basins
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..and thus on economic performance..

Change in present value of revenues from Hydropower and irrigation for SAPP Basins, Absent Adaptation

All Included Projects
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..across almost all basins

Changes in hydropower revenues from climate change (present value 2015 to 2050)
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Large impacts on power consumers..

Cumulative consumer expenditure on electricity (no climate change case=100%)
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..and on agriculture imports

Cumulative expenditure on agriculture imports (no climate change case=100)

2,100
2,000 ——

900 X

:> — ]

800

700

600

500

400 ——

300

. W
200 ¢
S —
100
I —
L - S —
. - . . . =
Senegal Zambezi Eastern Nile Niger Mile Equatorial Volta
Lakes
m Best Climate (no cc=100) + Worst Climate (no cc=100)




Adaptation




Six adaptation levers

Decision Variable Range of Lever Modification
Basin Level

Planned turbine capacity 50%, -25%, 0%, +25%, +50%

Planned reservoir storage -50% or -25%.

Mean conveyance Improved in increments of 10% from a baseline
irrigation efficiency assumption of 75%, to 85% or 95%.
Farm Level
Planned irrigated area adjusted on a continuous basis from -50% to
+50%.

Mean deficit irrigation (of deficit irrigation of 30%, 20%, 10%, or 0%.
water requirements)

Mean field-level irrigation 60% in the Reference case, can be increased to
efficiency 70% or 80%

Annual crop imports (of  Stop-gap measure

total production)




In principle adaptation is attractive...

Gains from perfect foresight adaptation in hydropower
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..but it can go wrong if not designed carefully

Damage from not adapting or mis-adapting hydropower expansion plans
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Choosing a mini-max adaptation strategy..

Zambezi basin: Regrets from alternative design options
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..leads to large reduction in regrets..
Reduced and residual regrets from the mini-max adaptation strategy
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..with both cost increases and savings..

Incremental cost of mini-max adaptation in hydropower
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..making adaptation economically worthwhile

Benefit/ cost ratio of mini-max adaptation in hydropower (only considering cost increases)

Benefit/ Cost ratio

Nile —

Zambezi

Volta

Senegal

[
Niger |
B

Congo

L

1 2 3 4 5 6




What does it take to implement the approach?

1. A set of downscaled climate projections

2. A hydrologic model of the relevant region

3. A project design and cost model




Develop technical guidelines on the integration of
climate change in the planning and design of
infrastructure in climate-sensitive sectors.

Promote an open-data knowledge repository for
climate resilient infrastructure development

Integrate climate resilience into project preparation
facilities

Launch training programs for climate-resilient
infrastructure professionals

Set up an observatory on climate resilient
infrastructure development in Africa, e.g with ICA




March/April 2015: expert workshop to be
convened with AUC

April 2015: presentation/ launch, possibly at
Africa Climate Resilient Infrastructure
Summit (ACRIS)

May/ June 2015: completion of the road
transport component



Annex slides
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Method can be used to capture
different degrees of risk aversion

Zambezi hydropower regrets
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Modeling the interaction of climate, hydrology,
energy and irrigation systems
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Starting points: Africa Infrastructure

Country Dia@()stic (AICD)...

AFRICA DEVELOPMENT FORUM

o Comprehensive overview of
current infrastructure status,
policy, institutional and financial
challenges

& SV
v

o Concludes that Africa needs to
spend US$93bn pa to catch-up
on infrastructure with rest of
developing world

» Estimates made under a “no Africa’s Infrastructure
climate change” presumption

A Time for Transformation




