

Enhancing the Climate Resilience of African Infrastructure

THE WATER AND POWER SECTORS: SUMMARY OF FINDINGS FEBRUARY 2015

James Neumann, Principal, Industrial Economics

Raffaello Cervigni Lead Environmental Economist Regional Coordinator, Climate Change Africa Region, The World Bank

Nordic Development Fund

The Climate-Poverty-Development Nexus

Vulnerability to Climate Change by Human Development Index

Vulnerability to Climate Change

Human Development Index (HDI)

🔀 Low

Medium

High and Very High

Sources:

1. Socioeconomic Data and Applications Center (SEDAC). Integrated Assessment of Climate Change: Model Visualization and Analysis (MVA).

http://sedac.ciesin.columbia.edu/mva/ccv/index.html#maps 2. UNDP. 2011. Human Development Reports. Human Development Statistical Tables. Accessed on February 27, 2012 at: http://hdr.undp.org/en/statistics/data/

The issue: a long term commitment to infrastructure-development..

PIDA long term targets

Sector

Target by

2040

Modern highways

37,300 km

Hydroelectric power generation 54,150 MW

Interconnecting power lines

16,500 km

New water storage capacity

20,101 hm3

..in the context of a very different climate in the future..

Data refer to the Volta river basin

800 CMIP3-A1B Projected Change in Mean Land Surface Precipitation (mm) CMIP3-B1 600 CMIP3-A2 CMIP5-RCP4.5 CMIP5-RCP8.5 400 Obs Base 200 -200 -400 -600 -800 1960 1980 2000 2020 2040 2060 2080 2100

Return to main slide show

..with increasing uncertainty on direction and magnitude of change

6

Objectives of regional report

<u>Overall</u>: Strengthen the analytical base for investments in Africa's infrastructure under a future uncertain climate; specifically:

- **1.** Estimate the **impacts** of climate change on the performance of a subset of infrastructure over a range of climate scenarios
- 2. Develop and test a **framework** for the planning and design of infrastructure investment that can be "**robust**" over a wide range of climate outcomes;
- **3.** Enhance the "**investment readiness**" of African countries to use climate finance to increase climate resilience of infrastructure

- 1. Climate change has large effects on infrastructure performance; ignoring it may lead to significant "regrets"
- 2. Despite uncertainty, it is possible to plan infrastructure development so as to reduce regrets
- 3. There will be cost increases and cost savings; the benefits in terms of reduced risk outweigh the cost increase
- 4. Climate resilience is a new challenge, but is manageable

Scope of the water and energy analysis

Seven River Basins

Four Power Pools

Two tracks of analysis

- Track 1: coarser scale (basins and power pools)
 - Emphasis on planning, trade-offs among policy objectives
- Track 2: specific investments scale
 - Emphasis on project design options

The study team

US/ Europe experts

Africa experts

- Stockholm Environment Instit./ US
- Rand Corporation
- Royal Institute of Technology Sweden
- Massachusetts Institute of Technology
- University of Massachusetts
- Industrial Economics, Inc.

- Nile Basin Initiative (Uganda)
- International Institute for Water and the Environment (Burkina Faso)
- Rhodes University (South Africa)
- University of Cape Town (South Africa)

The approach in 4 steps

- A. **Reference scenario**: by 2030, what infrastructure, where, when, what performance (MW, Hectares, etc.)
- **B. Impacts**: how performance will be affected under 100+ climate scenarios (no adaptation)
- **C. Perfect foresight adaptation**: assume you knew in advance the climate, how would you modify plans exante
- **D. Robust adaptation**: what are the planning choices that deliver performance in as many climate scenarios as possible

The reference scenario: a program of massive investment

Impacts

(14)

Large impacts on physical performance..

Changes in physical performance of hydropower and irrigation under climate change (2015 to 2050) in the Congo, Orange and Zambezi basins

.. across almost all basins

Changes in hydropower revenues from climate change (present value 2015 to 2050)

Large impacts on power consumers..

18

Cumulative consumer expenditure on electricity (no climate change case=100%)

.. and on agriculture imports

19

Cumulative expenditure on agriculture imports (no climate change case=100)

Adaptation

(21)	
Decision Variable	Range of Lever Modification
asin Level	
Planned turbine capacity	50%, -25%, 0%, +25%, +50%
Planned reservoir storage	-50% or -25%.
Mean conveyance	Improved in increments of 10% from a baseline
irrigation efficiency	assumption of 75%, to 85% or 95%.
arm Level	
Planned irrigated area	adjusted on a continuous basis from -50% to +50%.
Mean deficit irrigation (of water requirements)	deficit irrigation of 30%, 20%, 10%, or 0%.
Mean field-level irrigation efficiency	60% in the Reference case, can be increased to 70% or 80%
Annual crop imports (of total production)	Stop-gap measure

In principle adaptation is attractive...

22

Gains from perfect foresight adaptation in hydropower

..but it can go wrong if not designed carefully

23

Damage from not adapting or mis-adapting hydropower expansion plans

..leads to large reduction in regrets..

25

Reduced and residual regrets from the mini-max adaptation strategy

...with both cost increases and savings..

26

Incremental cost of mini-max adaptation in hydropower

..making adaptation economically worthwhile

27

Benefit/ cost ratio of mini-max adaptation in hydropower (only considering cost increases)

What does it take to implement the approach?

1. A set of downscaled climate projections

2. A hydrologic model of the relevant region

3. A project design and cost model

Recommendations

29

- 1. Develop <u>technical guidelines</u> on the integration of climate change in the planning and design of infrastructure in climate-sensitive sectors.
- 2. Promote an <u>open-data knowledge repository</u> for climate resilient infrastructure development
- 3. Integrate climate resilience into <u>project preparation</u> facilities
- 4. Launch <u>training programs</u> for climate-resilient infrastructure professionals
- 5. Set up an <u>observatory on climate resilient</u> <u>infrastructure</u> development in Africa, e.g with ICA

Next steps

- March/April 2015: expert workshop to be convened with AUC
- April 2015: presentation/ launch, possibly at Africa Climate Resilient Infrastructure Summit (ACRIS)
- May/ June 2015: completion of the road transport component

Annex slides

Method can be used to capture different degrees of risk aversion

Starting points: Africa Infrastructure Country Diagnostic (AICD)...

- Comprehensive overview of current infrastructure status, policy, institutional and financial challenges
- Concludes that Africa needs to spend US\$93bn pa to catch-up on infrastructure with rest of developing world
- Estimates made under a "no climate change" presumption

Africa's Infrastructure

A Time for Transformation