Modelling the relation between climate change and undernutrition at the global level

Simon Lloyd
Research Fellow
Department of Social and Environmental Health Research

Improving health worldwide

www.lshtm.ac.uk
Objectives

Developing a new global-level model:

... for estimating future child undernutrition
... under various SSP/RCP combinations
... explicitly accounting for:
 • rural and urban poverty
 • food prices

Acknowledgements

Stephane Hallegate and Mook Bangalore at the WB
Sari Kovats and Zaid Chalabi at LSHTM

Funding

World Bank
NIHR Health Protection Research Unit in Environmental Change and Health at LSHTM
Outline

• Hunger and undernutrition
 • some key considerations

• Previous climate change-undernutrition modelling
 • basis on which we’re building

• New model
 • where we’re heading...
Hunger and undernutrition

• ‘Hunger amidst scarcity’ to ‘hunger amidst abundance’ (Araghi 2000)
• Decades of high level attention but uneven progress
• Measured in various ways
 – ‘undernourishment’ or ‘hunger’
 – ‘undernutrition’, e.g. stunting, underweight

• Causation
 – undernutrition: food just one cause
 a reflection of nutrition – environment interaction (Rayner & Lang 2012)
Factors associated with popn patterns:

1970 to 1995, reduction in child underweight attributable to:

- 43%, improved female education
- 26%, increase food availability
- 19%, improved water access

(Smith and Haddad, 2000)

Irreversible stunting at 24 months:

- 25% (8-38%) due to having >=5 episodes of diarrhoea

(Checkley et al, 2008)
Undernutrition: climate change

Climate change impacts may be via:

- Changed labour productivity
- Changed crop productivity
- Changed water quantity &/or quality
- Changed infectious disease patterns

And via changed patterns of poverty

Factors associated with popn patterns:

1970 to 1995, reduction in child underweight attributable to:

- 43%, improved female education
- 26%, increase food availability
- 19%, improved water access

(Smith and Haddad, 2000)

Irreversible stunting at 24 months:

- 25% (8-38%) due to having >=5 episodes of diarrhoea

(Checkley et al, 2008)
Previous health impact modelling

• Major simplifications

• Upstream models:
 • focus on changed crop productivity under climate change
 • post-trade national calorie availability
What was included in the model?

Causal pathway* of undernutrition in children under 5

*Shows selected major pathways only. Structure open to debate.
What was included in the model?

Modelled pathway: climate via crops to stunting

- Social, political, cultural environment
 - Patterns of poverty
 - GDP/capita

- Food availability
 - Trade
 - Crop models
 - Climate models

- Health services
 - Women’s education
 - Maternal undernutrition

- Water & sanitation

- Low birth weight
 - Infectious diseases

- Under-nourishment

- Undernutrition
 - Stunting
 - Underweight
 - Wasting

- Mortality
 - Acute morbidity
 - Chronic disease & human capital
What was included in the model?

Available scenario data?

- Social, political, cultural environment
- Patterns of poverty
- GDP/capita
- Food availability
- Trade
- Crop models
- Climate models

- Health services
- Women’s education
- Maternal undernutrition
- Water & sanitation

- Low birth weight
- Infectious diseases

- Undernutrition
 - Stunting
 - Underweight
 - Wasting

- Mortality
- Acute morbidity
- Chronic disease & human capital
Future estimates: mortality by region

Estimated under 5 mortality* due to climate change-attributable stunting in 2030 (blue) and 2050 (orange) by region, under A1b emissions and for ‘base case’ socioeconomic scenario.

Globally:
~95 000/year by 2030
~85 000/year by 2050

* x-axis is number of deaths

Source: WHO, 2014
Future estimates: CC-attr stunting

Estimated climate change-attributable stunting in children under 5, under A1b emissions and three socioeconomic scenarios*

* L – low economic growth, B – base case, H – high economic growth

Source: WHO, 2014

All-cause mortality risk

Mod: 1.6 (1.3 - 2.2)
Svr: 4.1 (2.6 – 6.4)

(Black et al, 2008)
Future estimates: no CC cf. CC

Estimates of number of children stunted in futures with and without climate change in 2030 and 2050, under A1b emissions and three socioeconomic scenarios

Source: WHO, 2014
New child stunting model

Implications of findings from previous modelling:

• level (mod/svr) of stunting is critical
• socioeconomics matter a lot, but
 • crudely represented, and
 • expect climate to impact via non-crop routes
New child stunting model

• Global-level, statistical model

• Inputs to drive the model:
 • socioeconomic factors:
 • modelled: rural and urban poverty, Gini
 • scenario: education, LE, TFR, ...
 • food as ‘food price’ (PPI and CPI)

• Climate signal via poverty and food price

• Longitudinal data/country-level random effects

• Outputs:
 • national/regional-level, rural & urban, mod & svr stunting
 • what’s important?
Data for model fitting

- **Country**
 - Random slope/intercept, geographical region, ...

- **Year**
 - Food price, education, LE, TFR, GDP (PPP), ...

- **Rural**
- **Urban**
 - Mod/svr stunting, poverty

- N = 92
- 1990 - 2013
- n = 703
Crude correlations* by area

* Each point is for a given area (rural/urban), in a given country, for a given year. Complete data for poverty and price are not yet available.
Conclusions

• New model will make advances on previous work

• Still many aspects – inevitably - not modelled

• Multiple health models looking at the problem from various angles required...

....modelling as an ongoing process

(Levins, 1966)
The End

Thanks...