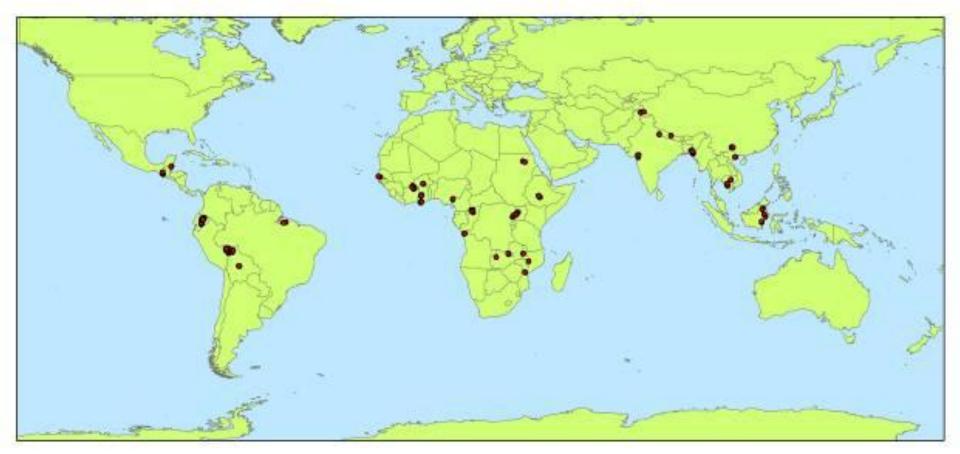


Environmental Income, Poverty, and Climate Change

Washington DC, 9 February 2015

Thinking beyond the canopy

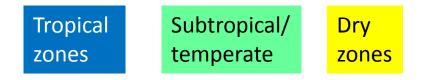
Sven Wunder, Frederik Noack, Therese Dokken, Arild Angelsen, Jan Börner

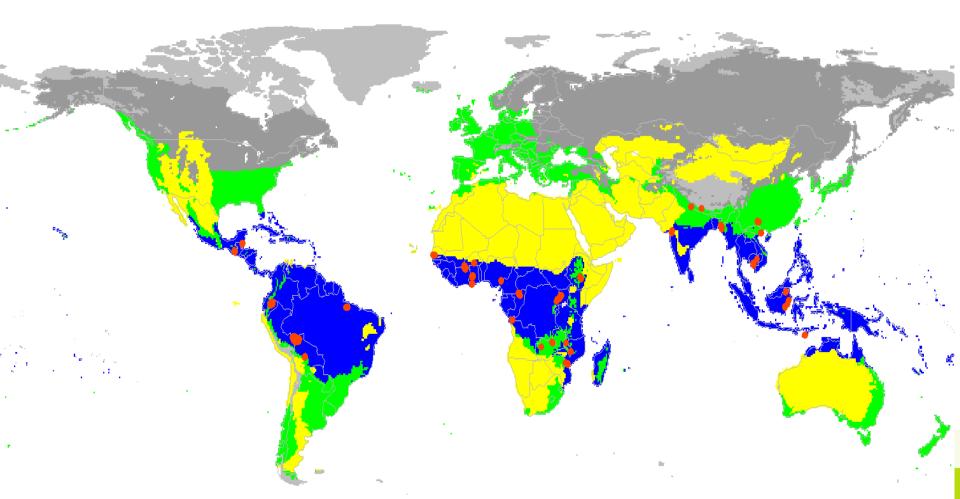

Poverty & Environment Network (PEN)

- Pan-tropical/ subtropical data sample
- Quarterly household income; household + village context data
- Focus: count forest & environmental income contributions – grossly under-represented in LSMS + other national surveys
- Uniform questionnaire tools (inspired by Cavendish 2000)
- Mainly PhD student partners

CIFOR coordinated, but highly collaborative

PEN field sites


24 countries, 33 partners, 58 sites, 360 villages, 8,000+ households. Data collected 2006–2010



Thinking beyond the canopy

PEN sites & Köppen-Geiger zones

PEN's multilayered sampling strategy

- Our criteria for (non-random) site selection:
 - Within a tropical or sub-tropical developing region,
 - Some access to forests (0 < forest cover < 100%)
- Site selection was opportunistic (PhD student choice)
 with some posterior gap-filling (e.g. West Africa)
- Within sites: stratified village selection (pre-defined gradients), random household selection in villages
- => Broadly representative of smallholder-dominated tropical and sub-tropical landscapes with moderateto-good access to forests; all but highest pop density.
- => Slight bias toward areas with "good forests" (vis-avis "rural developing world" baseline), and Africa

Research questions on climate-income linkages

RQ1: How much do the rural poor depend on environmental incomes, and how do these determine their current vulnerability and their capacity to adapt to climate change? (*static cross-section*)

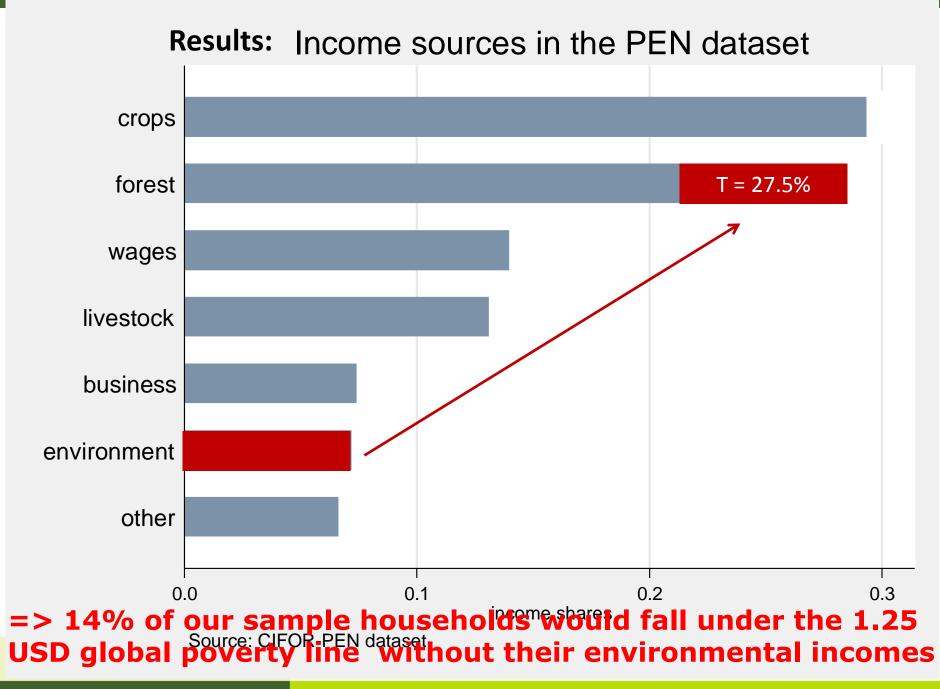
RQ2: How could climate change affect the vulnerability of the rural poor in the future through impacts on environmental and other incomes? (*predictive-speculative*) [analysis not yet finished]

Linking income and asset poverty: structurally vs. stochastically poor

- Classification of poverty type limited by lack of panel data
- Using hh assets to predict income (Dokken & Angelsen, 2015): Predictors: hh assets + hh & village contextual variables (by region)

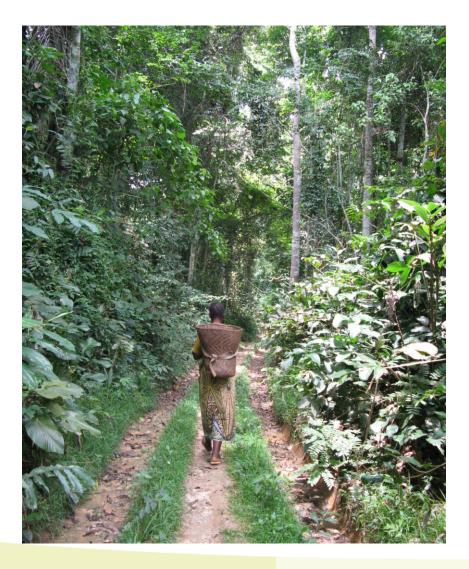
		Predicted income				
		Low	High			
Observed income	Low	Structurally poor	Stochastically poor			
	High	Stochastically non-poor	Structurally non-poor			
Thinking howard the canony			Contor for International Forestry Persoarch			

Center for international Forestry Research


Thinking beyond the canopy

Environmental reliance across structural poverty categories

Q1: Do structurally poor households rely more on environmental income?

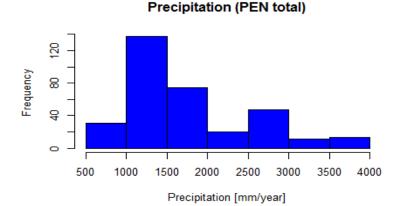

- Structurally poor have lowest **absolute** income from environmental resources in all regions,
- Asset-poor (structurally poor and stochastically non-poor) have higher income **shares** from environment compared to asset-rich hh – at least in South Asia and Africa
- Q2: What role for environmental incomes as a safety net in response to stochastic poverty?
 - **Asset-rich** households experiencing an income shortfall do not seem to compensate by more environmental income
 - Asset-poor households (prelim) off-farm options more important than env income responses?

Thinking beyond the canopy

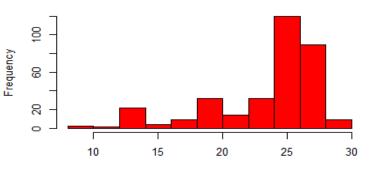
The role of extractive incomes:

"More than 10,000 years after the Agricultural **Revolution started,** millions of rural smallholders across the developing world may still derive as much income from foraging forests and wildlands as from cultivating crops"

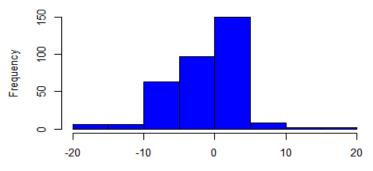
(Wunder, Angelsen, Belcher World Development 2014)


Bringing in the climate

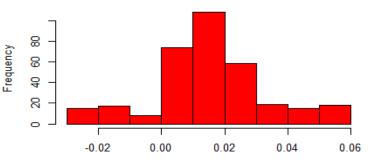
- Using CRU data (UEA) for temperature & rainfall


 most popular source, but relies much on
 extrapolated data in the tropics, with fewer
 station measurements
- Data 30 yr climate time series (pooled data)
- Using UDEL, GPCP, GPCC data for sensitivity analyses (adds also satellite-based data).
- Precipitation harder to extrapolate than temperature! **TRMM** data an alternative for tropics? Cumbersome download – pros & cons
- => No ideal data solution: your feedback, please!

Combining PEN with climate data



Temperature (PEN total)



Mean temperature [degree Celsius]

Precipitation Change (PEN total)

Temperature Change (PEN total)

Precipitation change [mm/year]

Temperature change [degree Celsius/year]

=> What st.dev. measures should we use?

Thinking beyond the canopy

Environmental income as safety net?

- Household self-reported shocks + ex-post responses
- Covariate shocks proxy for climate shocks (major crop failures, livestock or other asset losses) N=10,662
- For only 8% of covariate shocks, more environmental extraction was a major ex-post coping response
- Small, well-educated, and cropland-rich households less likely to use extraction as shock response (Probit)
- Village-level high forest income, low distance to urban centers, and Asian households were significantly more likely to use extraction as shock response (Probit)

=>HH perceive **rather low** scope for environmental safety nets to shocks

Theory: what expected linkages between climate and household incomes ?

- Households allocate production factors to activities (ag., env., other) and choose technology (e.g. crops) in ways that are sensitive to climate (rainfall, temperature), and its changes over time
- Climate trends and anomalies have customized income effects – be they positive or negative
- Environmental income expectedly less weather dependent than agricultural income -more resilient due to (bio)diversity- and other nonres. income.

Income regressions: empirical approach

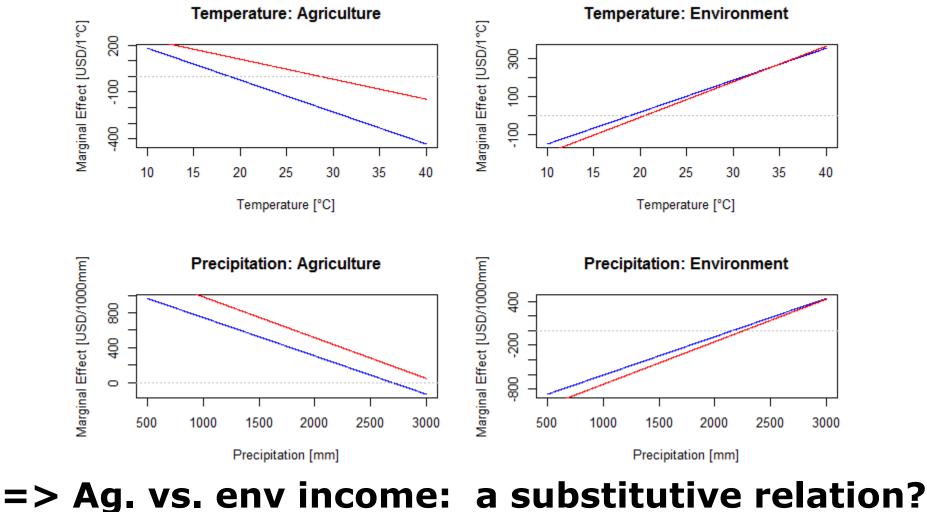
- Mean precipitation/ temperature cross-sectional differences as proxy for climate trends
- Climate anomaly: deviation of survey year weather from mean weather (30 years), divided by standard weather deviation
- Quadratic Taylor series approximation of climate and weather anomalies.
- OLS estimation of climate -> income relation, with standard errors clustered at village level
- Soil attributes, infrastructure, assets, geography as controls (in one model specification) – responses to anomalies vs. cross-sectional mean differences.

How do sectoral incomes vary with a changing climate (cross-section)?

- Dependent variable: sectoral + total income
- a) without controls b) with controls (assets, infrastructure, contextual variables, etc.)
- a) *Ex ante* adaptation to climate trends/ expected weather (e.g. crop choice)
 b) *Ex post* adaptation to anomalies/ unexpected shocks (e.g. labour reallocation)

a) w/o controls

	Agriculture	Environment	Other	Total
temp_mean	385***	-317***	40	109
	(137)	(102)	(72)	(169)
temp_mean ²	-10***	8***	-1	-3
	(4)	(3)	(2)	(4)
prec_mean	1183*	-1134	-46	4
	(626)	(800)	(432)	(1165)
prec_mean ²	-219	262	16	59
	(139)	(181)	(96)	(259)
temp_anomaly	-317**	585***	351***	618**
	(142)	(169)	(111)	(266)
temp_anomaly ²	-129	28	115	14
	(140)	(129)	(100)	(221)
prec_anomaly	-243***	-57	-33	-333***
	(77)	(69)	(41)	(107)
prec_anomaly ²	-11	17	-7	-1
	(30)	(21)	(22)	(40)
R ²	0.08	0.11	0.26	0.25
Ν	7978	7978	7978	7978 🛌
Controls	no	no	no	no
*** $p < 0.01, **p < 0.05, *p < 0.1$				CIFOR


Thinking beyond the canopy

a) with controls

•	Agriculture	Environment	Other	Total
temp_mean	161	-363**	149	-54
	(178)	(153)	(121)	(271)
temp_mean ²	-2	9**	-4	3
	(4)	(4)	(3)	(6)
prec_mean	1666**	-1410	-533	-277
	(733)	(1120)	(704)	(1412)
prec_mean ²	-265*	299	121	155
	(152)	(252)	(143)	(306)
temp_anomaly	-406***	546***	64	203
	(138)	(166)	(165)	(269)
temp_anomaly ²	-174	131	57	14
	(142)	(125)	(141)	(248)
prec_anomaly	-176**	-87	-30	-293**
	(80)	(88)	(58)	(122)
prec_anomaly ²	32	18	6	56
	(23)	(34)	(28)	(47)
R ²	0.13	0.11	0.32	0.30
Ν	6616	6616	6616	6616
Controls	\checkmark	\checkmark	\checkmark	✓
**** $p < 0.01$, ** $p < 0.05$, * $p < 0.1$				CIFOR

Thinking beyond the canopy

Marginal effects of climate trends

Thinking beyond the canopy

Preliminary conclusions (1)

- RQ1: What environmental dependence of the rural poor and vulnerable? (static cross-section)
- Extraction of wild resources provides as much income (~27%) as crops in our pantropical smallholder sample
- The poorest/ most vulnerable households rely relatively more on env. incomes, though they generate less of it than the better-off hh in absolute terms
- 1 in 7 hh. is raised above 1.25 USD by env. income
- Env. income plays not much role as a safety net in hh. self-stated response to co-variate (incl. climate) shocks

Preliminary conclusions (2)

- RQ2: What likely effect of climate change on livelihood vulnerability of the rural poor? (dynamically predictive)
- Over last 30 yr, still small rise in average temperature; more shifts in/ income impact of precipitation patterns
- Environmental incomes may in part substitute for ag. income declines, as long as climate change is limited...
- ...and shock (as well as population) densities remain low (higher extraction pressures sustainable?)
- Little sensitivity so far of total hh incomes to climate change (trends, anomalies) shows adaptive capacity
- Education and other investments in off-farm sectors may eventually be needed to adapt effectively

Thinking beyond the canopy