Global Program for Safer Schools

Peru Case Study

The Ring of Fire

Earthquakes

Floods

Landslides

Volcanoes

Earthquakes occur frequently

Year	1868	1970	1974	1979	1990	1991	1993	1996	2001	2005	2007
М	9.0	7.9	7.2	6.8	6.8	6.5	6.0	7.4	8.4	7.5	8.0

Schools Damaged by Earthquakes

School Seismic Rehabilitation

Who builds schools in Peru?

- 49,516 school facilities
- 187,685 school buildings
- School community: 6.5 million students
- Distribution: 35% urban, 65% rural

Key question: What intervention is needed for the current school infrastructure? A first answer: **OINFE's Algorithm**

Analysis of Census Results

Analysis of Census Results

Aggregated structural index by school facility

Second set of key questions

Where should the rehabilitation start?

What group of schools are in critical condition?

What is the magnitude of the rehabilitation investments?

Can the impact of the investment be measured over time?

How does the MoE communicate the results?

Measuring Seismic Risk (probabilistic approach)

Measuring Seismic Risk (probabilistic approach)

Lima's public school infrastructure portfolio

Average Annual Loss (AAL) by Structural Typology

Structural Type	Exposed Value (\$USD)	% of Exposed Value	AAL (\$USD)	% of Total AAL	AAL(‰)
Adobe (A)	25,992,820	1.8%	1,800,318	6%	69.3
Reinforced Masonry (AC)	436,206,675	30.6%	7,170,827	25%	16.4
Unreinforced Masonry (ASC)	70,580,669	4.9%	3,628,838	13%	51.4
Non ingeneering (P)	41,193,727	2.9%	4,235,392	15%	102.8
Steel Frame (EA)	7,799,709	0.5%	33,839	0%	4.3
Wood Frame (M)	10,577,105	0.7%	37,614	0%	3.6
Concrete Frame "APAFA" (APF)	121,703,172	8.5%	3,255,316	11%	26.7
Gran Unidad Escolar (GUE)	76,620,591	5.4%	1,235,549	4%	16.1
Concrete Frame 780 (PRE)	406,874,983	28.5%	6,574,254	23%	16.2
Concrete Frame 780 post (POST)	213,277,441	14.9%	951,878	3%	4.5
Temporary Class Room (PROV)	15,940,828	1.1%	19,928	0%	1.3
Total	1,426,767,720	100%	28,943,754	100%	20.3

High potential of collapse

		Sce	enario M7.6	j	Scenario M8.2				
Structural Typology	# Buildings	# Potential collapses	% collapse	Buildings Replacement Value (USD)	# Potential collapses	% collapse	Valor de edificacione s en colapso (USD)		
Adobe (A)	137	105	77%	23,186,585	137	100%	25,992,820		
Unreinforced Masonry (ASC)	1,384	419	30%	21,832,655	1,379	100%	70,202,623		
Non Engineering (P)	1,644	1,644	100%	41,193,727	1,644	100%	41,193,727		
Total	3165	2168	68%	86,212,967	3160	100%	137,389,170		

High potential of structural damage

		Scenario	o M7.6	Scenario M8.2			
Structural Typology	# Buildings	High		High			
		Potential	%	Potential	%		
		Damage		Damage			
Unreinforced Masonry (ASC)	1,384	965	70%	5	0%		
Reinforced Masonry (AC)	5,419	654	12%	2768	51%		
Cncrete Frame 780 (PRE)	3,263	324	10%	1543	47%		
Concrete Frame "APAFA" (APF)	1,097	499	45%	1097	100%		
Total	12,944	2,474	19%	5,413	42%		

Ranking of most critical school facilities by AAL

				# of buidings by structural typology											
ID_LOC	VALFIS (USD)	AAL (USD)		A	AC	ASC	Ρ	EA	Μ	APF	GUE	PRE	POST	PROV	TOTAL
315279	11,877,14 6	726,258	6%	26	8	2	2	0	7	0	0	0	1	0	46
296964	18,190,10 0	474,904	3%	0	14	3	0	0	0	0	0	0	0	0	17
320596	4,987,427	283,934	6%	0	5	1	5	0	0	0	6	11	0	0	28
340269	11,964,22 2	183,161	2%	0	15	1	0	0	0	0	9	1	0	0	26
309004	4,614,987	159,222	3%	14	27	12	1	1	0	0	0	4	0	0	59
288520	3,453,696	153,711	4%	0	2	5	0	0	0	3	0	0	0	0	10
144678	4,427,473	139,978	3%	0	10	9	8	0	0	21	0	0	0	2	50
299849	6,753,071	129,464	2%	0	5	3	1	1	0	0	0	24	0	0	34
343847	2,527,768	122,575	5%	0	7	3	1	0	0	0	0	4	1	2	18
÷	÷	÷		:		:	•••	:	:		:		:		:

Measuring Seismic Risk

Concentration of seismic risk by school facility in Lima and Callao

Scenario of school rehabilitation in Lima and Callao

Plan	Short	Medium	Long		
	1-3 years	3-5 years	5-10 years		
# ofsSchools to be rehabilitated	99 (5%)	198 (10%)	396 (20%)		
% risk reduction by phase	29%	22%	25%		
% risk reduction accumulated	29%	51%	76 %		
# total of buildings by phase	1,894	2,893	4,206		
Estimated Replacement (US\$ million)	55.9	24.8	29.9		
Estimated Retrofittin (US\$ million)	120.2	142.9	166.5		

Replacement (Potential of collapse)

Retrofitting (potential structural damage)

Challenges

Updating standard design and construction code (functional & structural)

Improving school infrastructure planning

Functional and structural rehabilitation

Increase local government capacity to manage school infrastructure

Regulate community participation on new infrastructure development

Improve maintenance protocols and financing

- 1. Diagnosis of Existing School Infrastructure
- 2. Design of National Plan for School Infrastructure (NPSI)
- 3. Design of Seismic Retrofitting Program
- 4. Building Capacity of MINEDU

- 1. Diagnosis of Existing School Infrastructure
- 2. Design of National Plan for School Infrastructure (NPSI)
- 3. Design of Seismic Retrofitting Program
- 4. Building Capacity of MINEDU

Activities

- Analyze Census results of MINEDU
- Assess seismic risk for school infrastructure nationwide

- 1. Diagnosis of Existing School Infrastructure
- 2. Design of National Plan for School Infrastructure (NPSI)
- 3. Design of Seismic Retrofitting Program
- 4. Building Capacity of MINEDU

Activities

Enhance infrastructure design:

- Assess other sector initiatives linked to infrastructure
- Assess local/international practices and methods of construction technologies
- Update standards and codes for school infrastructure **Improve infrastructure planning:**
- Assess local/international practices and methods for planning
- Develop integrated schools and urban corridors

Support the design of the investment component of NPSI:

- Develop methodologies to identify and prioritize infrastructure interventions
- Define strategic framework and methodology for the development of the investment component of the NPSI
- Deliver international workshop on school infrastructure planning

- 1. Diagnosis of Existing School Infrastructure
- 2. Design of National Plan for School Infrastructure (NPSI)
- 3. Design of Seismic Retrofitting Program
- 4. Building Capacity of MINEDU

Activities

- Identify suitable retrofitting alternatives and conduct cost-benefit analysis
- Support definition of the strategic framework and methodology for the development of the Seismic Retrofitting Program

- 1. Diagnosis of Existing School Infrastructure
- 2. Design of National Plan for School Infrastructure (NPSI)
- 3. Design of Seismic Retrofitting Program
- 4. Building Capacity of MINEDU

Activities

Deliver hands-on workshops to OINFE and the Secretariat for Strategic Planning in:

- Data analysis/management (incl. geospatial analysis)
- Disaster risk assessment