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Abstract

This paper focusses on how the progress of nations can be evaluated when pop-

ulations differ in size, longevity and income distributions. The framework is applied

to the (particular) demographic context of Sub-Saharan Africa (SSA). The findings

indicate that the contribution of population size to social welfare depends on ethical

considerations regarding the choice of a critical level above which a life is considered to

be worth living (or social welfare improving). Length of life does not have a significant

effect on social welfare prior to the demographic transition. SSA’s demographic explo-

sion over the last century has worsened social welfare for critical-level values greater

than $180 per year, i.e. roughly half the well-known dollar-a-day poverty line. This

supports the often heard view that slowing down demographic growth in SSA may

not only increase average living standards but may also raise overall social welfare.
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1 Introduction

Economic development is consistently linked to improved health outcomes and slower

demographic growth. Developed countries have already passed the so-called critical point

of a demographic transition. Beyond this critical point, populations are characterized

by relatively high life expectancy along with a fertility rate that is equal to the natural

population replacement rate. This demographic transition has also started to occur in the

developing world (see Figure 1). In recent years, many developing countries have indeed

experienced trends towards significantly lower fertility rates and increased life expectancy.

Sub-Saharan African (SSA) countries are by and large an exception to these trends

among the least developed countries. SSA infant mortality rates remain high at 77 per

thousand in 2010. The AIDS pandemic and several other geographically concentrated

diseases such as malaria have constrained health improvements in the region. SSA fertility

rates are high and overcompensate for these high mortality levels. Demographic growth

in SSA is the highest in the world, at 2.5% per year in 2010.

Looking further back in time, SSA’s last century has been characterized by an exploding

population with limited improvements in income and life expectancy. The population has

expanded tenfold between 1910 and 2010, at an average annual growth rate of 2.3%. In

contrast, per capita GDP has grown at an annual average rate of only 0.8% over that

period. Life expectancy at birth has doubled from 27 years in 1910 to 54 years in 2010,

corresponding to an annual average increase of 0.7%.
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Figure 1: Demographic transition for the different regions of the World
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How do these demographic and health trends affect social welfare in SSA? Answering

this question is the main purpose of this paper. To do so, the paper i)establishes a dom-

inance criterion for welfare comparisons when populations differ in size and in longevity,

using intertemporal social evaluation functions developed in the literature; ii)performs

temporal comparisons of social welfare in SSA during the last century by jointly consider-

ing changes in, and levels of, longevity, population size and incomes; and iii)evaluates the

effects of changes in population size and longevity on social welfare in SSA.

Incorporating longevity and demographic variables into evaluations of social welfare is

consistent with recent academic advances in development and welfare economics. The ob-

jectives of development policy have evolved along these lines over recent decades, shifting

somewhat from the traditional objective of income and economic growth towards broader,

and sometimes more sustainable, human development goals. Longevity and the distribu-

tion of welfare over time are crucial elements of human development, as argued below in

the first UNDP human development report:

“Human development is a process of enlarging people’s choices. In prin-

ciple, these choices can be infinite and change over time. But at all levels of

development, the three essential ones are for people to lead a long and healthy

life, to acquire knowledge and to have access to resources needed for a decent

standard of living. If these essential choices are not available, many other

opportunities remain inaccessible.” (UNDP, 1990, p. 10).

In such a context, social evaluation principles can be set in a welfarist intertemporal

framework and enable trade-offs between standards of living, longevity and population

size. Performing intertemporal social comparisons in a welfarist framework amounts to

ranking a two-dimensional matrix (individuals and time periods) of individual welfare

defined across different social states. Given an intertemporal social evaluation function

W , social state A is deemed better than the social state B in terms of welfare if and only

if WA ≥ WB. If the welfare function W is uniquely defined, this comparison is easily

performed by comparing the value of the function for the two social states A and B. To

agree on a unique social evaluation function is, however, an ambitious task; views differ

widely as to how to value and to trade-off the importance of such things as the length of

lives, the quantity of lives and the living standards enjoyed during these lives (the“quality”

of these lives). It may thus be useful to perform dominance tests when comparing social

states in such a context.

Kolm (1969), Atkinson (1970), Shorrocks (1983) and Kakwani (1984) provide founda-

tions for atemporal welfare dominance in the case of fixed populations by using Dalton’s

population principle. Dalton’s population principle stipulates that an income distribution

and its r -times replication (for an arbitrary integer r) yield identical levels of social wel-

2



fare: population size does not matter per se in social evaluation. Shorrocks (1983) and

Kakwani (1984) in particular establish an equivalence between welfare dominance criteria

based on average generalized utilitarianism (AGU) and a generalized-Lorenz-curve (GLC)

dominance criterion — see below for more details. According to this, an income distribu-

tion second-order dominates a second one if the GLC of the first lies above the GLC of

the latter.

Similar dominance criteria have been developed recently for the case of variable popula-

tion sizes using critical-level generalized utilitarianism (CLGU) as an alternative principle

to AGU. Trannoy and Weymark (2009) define a second-order dominance criterion based on

CLGU through the use of generalized concentration curves. Duclos and Zabsonré (2010)

develop alternative techniques that can order distributions of different population sizes at

arbitrary orders of dominance and present methods for setting lower and upper bounds of

critical levels in those dominance comparisons.

To the best of our knowledge, no dominance criteria have yet been provided for in-

tertemporal CLGU1. This is the first objective of this paper. Having set a robust normative

framework for assessing the lengths, quantities and qualities of lives, the second objective

is to apply that framework to assess the evolution of social welfare in SSA. It is found

that the contribution of population size to social welfare depends on the normative choice

of a critical level — the point at which a life is considered to be worth living and social

welfare improving. For instance, SSA’s demographic growth over the last century has

worsened social welfare for critical-level values greater than $180 per year, i.e., roughly

half the well-known dollar-a-day poverty line. Increases in life expectancy did not impact

significantly the social welfare.

The rest of the paper is organized as follows. Section 2 describes briefly the dominance

criteria found in the literature for atemporal social evaluations principles, considering in

particular AGU and CLGU, and based on generalized Lorenz dominance and generalized

concentration curve dominance. Section 3 defines multi-period critical-level utilitarian

dominance and then derives multi-period dominance criteria. Section 4 describes the

data and SSA’s economic development and demographic transition. Intertemporal welfare

comparisons are performed in Section 5 and Section 6 concludes.

1Duclos and Housseini (2013) do develop, however, procedures for constructing multi-period critical-

level utilitarian functions.
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2 Welfare dominance for average and critical-level

utilitarian principles

2.1 Welfare dominance for average generalized utilitarianism

2.1.1 Average generalized utilitarian dominance

Let u = (u1, ....., un) ∈ Rn be a distribution of atemporal utility among a population of

size n ∈ N. ui will be interpreted later on as the income of individual i. The set of

possible utility distributions is U = Un∈NRn. Average generalized utilitarian social welfare

functions are defined by the following social welfare function:

WAU
g (u) =

1

n

n∑
i=1

g(ui). (1)

where g is an increasing transformation g : R 7−→ R of utilities. The functions WAU
g (u)

are said to be welfarist because they depend solely on the vector of individual utilities u.

A specific case of WAU
g (u) is average utilitarianism, by which g(u) = u.

Average generalized utilitarianism satisfies Dalton’s population principle, which stip-

ulates that an income distribution and its r -fold replication (for an arbitrary integer r)

yield identical social welfare. According to this principle, adding a new individual to an

existing population increases social welfare if and only if his utility is greater than the

average utility of the existing population (further discussion of this in Blackorby et al.,

2005).

Dominance testing proceeds from the general form in (1) by positing properties that

g(·) must obey. The property that is most commonly imposed is concavity. g(·) func-

tions that are concave obey the well-known Pigou-Dalton transfer principle, by which a

mean-preserving and rank-preserving transfer of utility from a better-off to a lesser-off indi-

vidual must increase social welfare. Imposing concavity leads to criteria for “second-order”

dominance. In the welfare economics tradition, the paper focuses on such second-order

dominance techniques, although generalization to other orders of dominance are possible,

as done for instance in Cockburn et al. (2012). The equivalence results shown below in-

dicate how simple comparisons of dominance curves can establish unambiguous rankings

over various sorts of atemporal, intertemporal, fixed-population and variable-population

size second-order classes of social welfare functions.

Average generalized utilitarian dominance

Average generalized utilitarian dominance is defined by the quasi-ordering �AU on the set

of utility distributions U by considering the intersection of all average generalized utilitar-

ian social welfare functions WAU
g with g(u) concave in u. For two given vectors of lifetime

4



utility u and u′, u average-generalized-utilitarian dominates u′ if and only if social wel-

fare with u is greater than social welfare with u′ as measured by any average generalized

utilitarian function WAU
g with concave g:

u �AU u′ ⇔WAU
g (u) ≥WAU

g (u′). (2)

The Lorenz curve ranks utility distributions by their level of inequality (Atkinson,

1970), thus ignoring the average level of utility. To take into account differences in average

utility as well as differences in inequality, Shorrocks (1983) and Kakwani (1984) introduce

the generalized Lorenz curve (GLC), that is, the Lorenz curve multiplied by average utility.

For a utility distribution u ∈ U , let u↑ be the vector in which the components of u have

been rearranged in a non-decreasing order. Let p = k
n for some k ∈ {1, ..., n}. The GLC

is the function GLu : [0, 1]→ R defined as:

GLu(p) =
1

n

k∑
i=1

u↑i. (3)

For non-integer values of k, GLu(p) is obtained by linear interpolation. GLu(p) gives the

contribution of the poorest p% of the population to per capita income.

Numerical example: For a utility vector u = (17, 23, 20, 30, 25, 12, 34, 45, 26, 32),

the corresponding generalized Lorenz curve is as follows:

p 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

u↑ 12 17 20 23 25 26 30 32 34 45

GLu(p) 1.2 2.9 4.9 7.2 9.7 12.3 15.3 18.5 21.9 26.4

0
5

1
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1
5

2
0

2
5

G
L
u
(p

)

0 .2 .4 .6 .8 1
p

Figure 2: Example of a generalized Lorenz curve
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Generalized Lorenz dominance

Generalized Lorenz dominance is defined by the quasi-ordering �GL on the set of utility

distributions U by comparing the GLC of utility distributions. For two given vectors of

atemporal utility u and u′, u generalized-Lorenz-dominates u′ if and only if the GLC of u

lies above the GLC of u′. Thus,

u �GL u′ ⇔ GLu(p) ≥ GLu′(p) for all p ∈ [0, 1]. (4)

Shorrocks (1983) and Kakwani (1984) establish equivalence between average general-

ized utilitarian dominance and generalized Lorenz dominance.

The Kakwani-Shorrocks Theorem:

For all u, u′ ∈ U , u �GL u′ ⇔ u �AU u′.

2.2 Welfare dominance for critical-level generalized utilitarianism

2.2.1 Critical-level generalized utilitarian dominance

Critical-level generalized utilitarianism (CLGU) was introduced by Blackorby and Don-

aldson (1984) to overcome some of the limitations of total (or classical) utilitarianism and

average utilitarianism. Total utilitarianism leads to what is referred to in the literature

as the repugnant conclusion (Parfit, 1984). Total utilitarianism deems a sufficiently large

population to be better than a much smaller population, even when the larger population

has a very low average utility. Average utilitarianism implies that a one-person society

with a high average utility dominates any other society with lower average utility, regard-

less of how large the second society is. The CLGU principle is introduced to avoid these

undesirable results and to provide an arguably more appropriate criterion to value the

welfare of populations with different sizes. A CLGU social welfare function can be defined

as:

WCL
α,g (u) =

n∑
i=1

[g(ui)− g(α)] (5)

for u ∈ Rn where g is an increasing utility transformation g : R 7−→ R and α is the critical

level utility, namely, the level of utility of an individual whose contribution to social utility

is neither positive nor negative. α can also be viewed as a normative threshold for valuing

lives and for whether a society will benefit from the addition of a new person. The

CLGU social welfare function in (5) is the sum of transformed utilities net of the same

transformation of the critical level.
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CLGU dominance

The CLGU dominance is defined by the quasi-ordering �CLα on the set of utility distribu-

tions U by considering the intersection of all CLGU social welfare functions with concave

g. For two vectors of utility u and u′, u CLGU dominates u′ if and only if social welfare

with u is greater than social welfare with u′ as measured by any CLGU function WCL
α,g with

concave g:

u �CLα u′ ⇔WCL
α,g (u) ≥WCL

α,g (u′). (6)

Note that CLGU is equivalent to classical utilitarianism if g(α) = 0. With identical

population sizes, critical-level generalized utilitarian dominance is equivalent to average

generalized utilitarian dominance.

2.2.2 Critical-level generalized concentration curve dominance

In the manner of the generalized Lorenz curve for average generalized utilitarianism, Tran-

noy and Weymark (2009) define a generalized concentration curve (GCC), defined as fol-

lows:

For any utility distribution, a generalized concentration curve plots the sum

of the utility of the t individuals with the smallest utilities against t, using linear

interpolation so that the curve is defined for non-integer values of t (Trannoy

and Weymark, 2009, p. 271).

Formally, for u ∈ U , the GCC is the function GCu : [0, n]→ R defined for t ∈ {1, ..., n}
as

GCu(t) =

t∑
i=1

u↑i. (7)

For non-integer values of t, GCu(t) is obtained by linear interpolation.

Numerical example: For the utility vector u = (17, 23, 20, 30, 25, 12, 34, 45, 26, 32)

of the preceding example, the generalized concentration curve is given by:

t 1 2 3 4 5 6 7 8 9 10

u↑ 12 17 20 23 25 26 30 32 34 45

GCu(t) 12 29 49 72 97 123 153 185 219 264
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Figure 3: Example of a generalized concentration curve

For generalized Lorenz dominance, the Dalton population principle is used to replicate

populations and to deal with different population sizes. For CLGU dominance, Trannoy

and Weymark (2009) consider augmented utility vectors. For all u ∈ U , α ∈ R and n ∈ N,

we obtain an augmented utility vector uα,n = (u, α1n), where 1n is the vector of 1 s in Rn.

uα,n is thus of size n+ n with n values of α.

Critical-level GCC dominance

Critical-level GCC dominance is defined by the quasi-ordering �GCα on the set of utility

distributions U and by comparing the GCC of augmented utility distributions. For all

u, u′ ∈ U , let n(u, u′) = 0 if n ≥ n′ and n(u, u′) = n′ − n otherwise; u critical-level GCC

dominates u′ if and only if the GCC of uα,n(u,u′) lies above the GCC of u′α,n(u′,u) across

the entire distribution:

u �GCα u′ ⇔ GCuα,n(u,u′)(t) ≥ GCu′α,n(u′,u)(t) for all t ∈ [0,max{n, n′}] (8)

After having defined the GCC, Trannoy and Weymark (2009) establish the following

equivalence between CLGU dominance and GCC dominance:

The Trannoy-Weymark Theorem:

For any α ∈ R, for all u, u′ ∈ U , u �GCα u′ ⇔ u �CLα u′.
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3 Welfare dominance for multi-period CLGU

Evaluating public policies often involves comparing social states of the world in which

populations differ in size and longevity. This requires social evaluation principles to be

set up in a normative framework that is sensitive both to the number and length of lives.

Intertemporal CLGU in its multi-period version was introduced by Duclos and Hous-

seini (2013) to make such analysis possible and to overcome some of the limits of the

non-temporal CLGU presented above, notably its failure to avoid a temporally repugnant

conclusion and the fact that it must satisfy the critical-level temporal consistency prop-

erty (further details in Duclos and Housseini, 2013). Our objective in this section is to

establish a dominance criterion for multi-period CLGU that is similar to both Lorenz and

concentration curve dominances.

3.1 Multi-period CLGU dominance

Performing social ranking when populations differ in size and longevity amounts to compar-

ing social states of the world defined by a matrix of utilities in two dimensions: individual

and time period. Thus, a social state x ∈ X is defined by a matrix of utilities U ∈ Mu

that gives periodic utilities rather than vectors of lifetime utility for different individuals.

U = {ui,j}i∈N ;j∈T , where N = {1, 2, ..., n} is the set of individuals and T = {1, 2, ..., T} is

the time frame analyzed. Thus, the total number of individuals is n and the last period of

evaluation is T . The time periods are simply a placeholder and can represent any desired

length of time.

Basically, individuals are born on different dates and have different lengths of life.

Period 1 thus corresponds to the date of birth of the first person born and the last period

T is the date of death of the last person alive. Thus, some individuals have not been born

yet at the beginning of the period of analysis and others die before T . The utility remains

blank in the matrix if the individual is not alive in the corresponding period. A sample

utility matrix follows:

Persons\periods 1 2 3 . . T − 1 T

1 u1,2 u1,3 .. .. u1,T−1

2 u2,1 u2,2 u2,3

3 u3,. u3,. u3,T−1 u3,T

. u.,1 u.,2 u.,3 u.,. u.,.

. u.,2 u.,3

n un,1 un,2 un,3 .. .. un,T−1 un,T
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The multi-period CLGU principle for such a utility matrix is defined by the following

social welfare function:

WPCL
α,g (U) =

n∑
i=1

si+Ti∑
t=si+1

[g(uit)− g(α)] (9)

for U ∈ Mu, and where si is the date of birth of person i, si + Ti his date of death, g is

the utility transformation g : R 7−→ R defining the attitude of the social planner towards

inequality in the utility distribution and α is the periodic critical-level utility. α is a level

of periodic utility enjoyed by an arbitrary person i in an additional period of life that

does not alter the social evaluation function. Thus, an additional period of life increases

social welfare if the additional utility is above the periodic critical level, and conversely

is welfare-decreasing if the utility is below α. Building on this multi-period CLGU social

welfare function, we define the multi-period CLGU dominance as follows.

Multi-period CLGU dominance

The multi-period CLGU dominance is defined by the quasi-ordering �PCLα on the set of

utility matrices U by considering the intersection of all multi-period CLGU social welfare

functions WPCL
α,g with concave g. For two given utility matrices U and U ′, U multi-period

CLGU dominates U ′ if and only if the social welfare with U is greater than the social

welfare with U ′ as measured by any multi-period CLGU function WPCL
α,g with concave g:

U �PCLα U ′ ⇔WPCL
α,g (U) ≥WPCL

α,g (U ′). (10)

3.2 Multi-period critical-level generalized concentration curve dominance

The objective here is to define a dominance curve from a utility matrix that provides

the same social ranking as the one obtained using a multi-period CLGU social evaluation

function. To do this, we first introduce the concept of α one-person equivalent population

and define the individual version of a generalized concentration curve (GCC) that will be

used to rank two social states with different population sizes and lengths of life.

The α one-person equivalent population

To deal with populations of different sizes, each population is represented by an equivalent

population that has the same level of social welfare and only one living person, the one-

person equivalent population, defined as follows:

Definition 1. Let U = {ui,j}i∈N ;j∈T be a utility matrix defined for a population P , the

α one-person equivalent population (OPEP) is defined as a fictive one-person pop-

ulation P̃ where the only person alive has a notional lifespan equal to the sum of lifespans
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of individuals in P , T̃ = T1 + T2 + ...+ Tn, and a utility vector of

ũ = {{u1,j}j∈T1 ∪{u2,j}j∈T2 ∪ ...∪{un,j}j∈Tn}, such that P and P̃ are deemed equally good

by any multi-period CLGU social welfare function WPCL
α,g .

Given the definition of P̃ , temporal anonymity and indifference for unfragmented lives

of WPCL
α,g (established in Duclos and Housseini, 2013) both ensure that P and P̃ are ranked

as equally good by WPCL
α,g .

Example: Let P be a population whose utility matrix is given by:

5 7 3

13 13 9

12 10 9 11

The utility vector of its OPEP P̃ is then given by: ũ = (5, 7, 3, 13, 13, 9, 12, 10, 9, 11).

The temporal generalized concentration curve

The purpose of the temporal generalized concentration curve is to provide a graphical

criterion to rank individuals using their distribution of utility over time. Thus, this curve

can only be defined when knowing preferences and attitudes towards the temporal distri-

bution of utility. To do this, we build on the literature of intertemporal welfare, poverty

dynamics and lifetime poverty measurement (Bossert et al., 2010; Calvo and Dercon, 2009;

Chakravarty et al., 1985; Foster, 2009; Hoy et al., 2010; Maasoumi and Zandvakili, 1986,

1990; Rodgers and Rodgers, 1993; Salas and Rabadan, 1998). In the lifetime poverty

literature, the chronic poverty axiom is mostly used to characterize the measurement of

lifetime poverty (Bossert et al., 2010; Foster, 2009; Hoy et al., 2010; Rodgers and Rodgers,

1993). Briefly, the chronic poverty axiom stipulates an aversion to utility being unequally

distributed over time (temporal inequality). This suggests that an individual with a more

equal distribution of utility over time is deemed better off than an individual with a less

equal distribution of utility over time, everything else being the same. To account for this

aversion to unequally distributed multi-period utility over time, the literature on intertem-

poral welfare measurement usually postulates a concave welfare function with respect to

multi-period utilities (Maasoumi and Zandvakili, 1986, 1990; Salas and Rabadan, 1998).

This preference for an equal distribution of utility across time is also consistent with con-

sumer preferences for consumption smoothing over time. It is generally recognized in

consumer theory that an agent’s current consumption is determined by lifetime income

rather than current income (Deaton and Paxton, 1994; Friedman, 1957). Given all this,

we postulate a second order dominance curve called the temporal generalized concentration

curve for ranking temporal distributions of utility. Recall that second order dominance
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corresponds to a concave inequality-averse welfare function to rank individuals. The tem-

poral generalized concentration curve is defined as follows.

Definition 2. For any temporal utility distribution, the temporal generalized concen-

tration curve (TGCC) plots the sum of the multi-period utilities in the t periods with the

t smallest utilities against t, using linear interpolation to define the curve for non-integer

values of t.

Formally, for a temporal utility distribution u ∈ RT , the TGCC is the function TGCu :

[0, T ]→ R, defined as follows for t ∈ {1, ..., T}:

TGCu(t) =
t∑
i=1

u↑i (11)

and for non-integers values of t, TGCu(t) is obtained by linear interpolation.

Numerical example: Let u = (17, 33, 14, 32, 25, 18, 34, 37, 26, 15) be the temporal

distribution of utility of person i. His temporal generalized concentration curve is then:

t 1 2 3 4 5 6 7 8 9 10

u↑ 14 15 17 18 25 26 32 33 34 37

GCu(t) 14 29 46 64 89 115 147 180 214 251

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

T
G
C
u
(t
)

0 2 4 6 8 10
t

Figure 4: Example of a temporal generalized concentration curve

As in Trannoy and Weymark (2009), we define the augmented temporal utility vector

for a temporal distribution of utility in order to be able to compare temporal generalized

concentration curves defined for individuals with differing longevity.
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The augmented temporal utility vector is defined as follows: for a temporal utility

vector u ∈Mu, α ∈ R and T ∈ N, the augmented temporal utility vector uα,T = (u, α1T )

where 1T is the vector of 1 s in RT .

Critical-level temporal GCC dominance

The critical-level temporal GCC dominance is defined by the quasi-ordering �TGCα on the

set of temporal utility vectors U by comparing the TGCC of augmented temporal utility

vectors. For all u, u′ ∈ U , let T (u, u′) = 0 if T ≥ T ′ and T (u, u′) = T ′ − T otherwise;

u critical-level TGCC dominates u′ if and only if the TGCC of uα,T (u,u′) lies above the

TGCC of u′
α,T (u′,u)

:

u �TGCα u′ ⇔ TGCu
α,T (u,u′)

(t) ≥ TGCu′
α,T (u′,u)

(t) for all t ∈ [0,max{T, T ′}] (12)

Note that if g(α) = 0, the multi-period CLGU principle leads to intertemporal classical

utilitarianism (developed by Blackorby et al., 1996a), and for populations of the same size

where individuals have the same lengths of life, the critical-level generalized utilitarian

dominance is equivalent to intertemporal average generalized utilitarian dominance that

is defined by the following value function:

W IA(U) =
1

nT

n∑
i=1

si+T∑
t=si+1

g(uit) (13)

We use this intertemporal social evaluation function to define the intertemporal average

generalized utilitarian dominance on the set of utility matrices Mu.

Intertemporal average generalized utilitarian dominance

Intertemporal average generalized utilitarian dominance is defined by the quasi-ordering

�IA on the set of utility matrices Mu by considering the intersection of all intertemporal

average generalized utilitarian social welfare functions. For two given utility matrices

U and U ′, U intertemporally average-generalized-utilitarian dominates U ′ if and only if

the social welfare with U is greater than the social welfare with U ′ as measured by any

intertemporal average generalized utilitarian function W IA with concave g:

U �IAα U ′ ⇔W IA(U) ≥W IA(U ′). (14)

We also introduce intertemporal generalized Lorenz dominance, which provides the

same social ranking as that obtained using multi-period critical-level generalized concen-

tration curve dominance when population size and longevity are fixed. The intertemporal

generalized Lorenz dominance is defined as follows:
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Intertemporal generalized Lorenz dominance

Intertemporal generalized Lorenz dominance is defined by the quasi-ordering �IGL on the

set of utility matrices Mu by comparing the intertemporal GLC of the OPEP utility dis-

tributions. For two given utility matrices U and U ′, U intertemporally generalized-Lorenz

dominates U ′ if and only if the GLC of the temporal utility distribution ũ always lies above

the GLC of the temporal distribution ũ′:

U �IGL U ′ ⇔ GLũ(t) ≥ GLũ′(t) for all t ∈ [0, 1]. (15)

3.3 Dominance criteria for multi-period CLGU: An equivalence theorem

After having defined multi-period CLGU dominance and critical-level temporal GCC dom-

inance, the objective in this section is to establish equivalence between the two criteria

such that the temporal GCC can be used for empirical applications. As argued in pre-

vious sections, comparisons by dominance curves are necessary given the arbitrariness of

the utility transformation g in the definition of the multi-period CLGU function WPCL
α,g .

We show here that for any critical-level α and any symmetric, increasing and concave

function g, the quasi-ordering of matrices of multi-period utilities obtained using WPCL
α,g is

equivalent to that obtained using the critical-level temporal GCC dominance for the same

value of α.

To do this, we first establish, in the following lemma, equivalence between intertempo-

ral average generalized utilitarian dominance and intertemporal generalized Lorenz domi-

nance.

Lemma 1. For all U,U ′ ∈Mu, ũ �IGL ũ′ ⇔ U �IA U ′

Proof. The result follows directly from i) the additive separability of W IA that allows us

to view the temporal distributions ũ and ũ′ as distributions of individual lifetime utilities

and ii) the Kakwani-Shorrocks theorem.

We use the multi-period critical level principle to deal with populations of variable

longevity and size, and to establish the equivalence between multi-period CLGU dominance

and critical-level temporal GCC dominance formulated in the following theorem.

Theorem 1. For any α ∈ R, for all U,U ′ ∈Mu, U �PCLα U ′ ⇔ ũ �TGCα ũ′.
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3.4 Multi-period critical-band generalized utilitarian dominance

Population critical-band utilitarianism was introduced by Blackorby et al. (1996b) to over-

come some of the limitations of critical-level utilitarianism addressed by Broome (1992,

2004, 2007), the fixed critical level itself being criticized. Broome noted that critical-level

utilitarianism also leads to a form of the Parfit repugnant conclusion that is commonly

called the α-repugnant conclusion. As mentioned by Blackorby et al. (1996b):

According to CLU, any social state with an average utility above the critical

level is inferior to another state with a suitably large population and an average

utility that is just above the critical level (Blackorby et al., 1996b).

This suggests that the critical-level utility should not be extremely low, but a higher

value would prevent the existence of individuals whose lifetime utilities are just below it

when the welfare of the existing population is unaffected. This leads Broome to reject the

fixed critical level principle. Critical-band utilitarianism was developed to overcome this

criticism. Rather than imposing a single value for the critical level, it considers a range

of critical levels. The principle stipulates that an additional person with a lifetime utility

that is above the upper bound of the range of critical levels is welfare-increasing, while

an additional person with a lifetime utility that is below the lower bound of the range is

welfare-decreasing. The welfare impact is indeterminate when the lifetime utility of the

new person falls within the range of critical levels. Thus, for an interval of critical levels

[α, α], critical-band utilitarianism is defined by the following value function:

WCL
α,g (u) =

n∑
i=1

[g(ui)− g(α)], α ∈ [α, α] (16)

The above arguments in favour of the critical-band population principle also apply to

multi-period critical-level utilitarianism, developed to overcome the temporal repugnant

conclusion. Indeed, the choice of a fixed value for the multi-period critical level could

hardly provide satisfactory results. Choosing a low multi-period critical level may lead

to the α-repugnant conclusion, while too high a value for the multi-period critical level

in the social evaluation function may prevent the extension of a life that is worth living.

Furthermore, the critical-band principles provide more robust social rankings given that

they are less sensitive to the choice of a specific critical level within a consensual interval.

Because of this, in this paper we also consider the multi-period critical-band generalized

utilitarianism defined by the following value function:

WPCL
α,g (U) =

n∑
i=1

si+Ti∑
t=si+1

[g(uit)− g(α)], α ∈ [α, α] (17)

with [α, α] being the range of multi-period critical levels.
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We use this social evaluation principle to define multi-period critical-band generalized

utilitarian dominance as follows:

Multi-period critical-band generalized utilitarian dominance

Multi-period critical-band [α, α] generalized utilitarian dominance is defined by the quasi-

ordering �PCB[α,α] on the set of utility matrices U by considering the intersection of all multi-

period CLGU social welfare functions for all α ∈ [α, α]. For two given utility matrices U

and U ′, U multi-period critical-band-[α, α]-generalized-utilitarian dominates U ′ if and only

if the social welfare with U is greater than the social welfare with U ′ as measured by any

multi-period critical-level generalized utilitarian function WPCL
α,g for all α ∈ [α, α] and for

all concave g:

For any α, α ∈ R, and for all U,U ′ ∈Mu,

U �PCB[α,α] U
′ ⇔ U �PCLα U ′ ∀α ∈ [α, α]. (18)

For the purpose of empirical applications, the following corollary establishes equiva-

lence between multi-period critical-band utilitarianism, multi-period critical-level utilitar-

ianism and the temporal generalized concentration curve.

Corollary 1. For any α, α ∈ R, and for all U,U ′ ∈ Mu, the following conditions are

equivalent:

1. U �PCB[α,α] U
′

2.
[
U �PCLα U ′ and U �PCLα U ′

]
, and

3.
[
Ũ �TGCα Ũ ′ and Ũ �TGCα Ũ ′

]
.

4 Data and descriptive analysis

Our empirical analysis relies on three types of data: i)the annual distributions of income

among individuals from 1820 to 2010, ii)demographic and health data, such as age struc-

tures of the population and life expectancies by age in each period and iii)income transition

matrices from one period to another. We use these different data to estimate the income

distributions, population sizes and structures and life expectancies by age in SSA between

1910 and 2010. Data on income distributions are from Bourguignon and Morrisson (2002),

who provide historical data on income distributions for the different regions of the world

for the period 1820-1992. We extended this dataset to 2010 by using the growth rates of

per capita income published by the World Bank (2013) and by assuming, for simplicity,

that inequality levels have remained unchanged between 1992 and 2010. Bourguignon and
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Morrisson (2002)’s data are in the form of ”grouped” income distributions by deciles. We

regenerate samples of individual-level microdata for the different country groups of SSA,

which sum to a total of 46 countries. The regeneration of samples is done by means of

Shorrocks and Wan (2009)’s algorithm, which makes it possible to recreate individual-level

microdata from the aggregated data2. We generated a sample of 1,000 observations for

each of the four country groups and for every year from 1820 to 2010. Demographic data

are from the Population Division of the UN Department of Economic and Social Affairs

(2013), which provides the age structures of the world population for different regions and

countries between 1950 and 2010. Life expectancies by age are estimated by combining

historical data on life expectancy at birth provided by Bourguignon and Morrisson (2002)

and the World Life Tables obtained from the World Health Organization, World Health

Statistics (2012). Using these different datasets, the following sub-sections perform a de-

scriptive analysis of changes in income distributions, life expectancy and population size

in SSA over the last century.

4.1 Economic development, longevity and population size in Sub-Saharan

Africa over the last century

The last century in Sub-Saharan Africa has been characterized by explosive population

growth along with more limited improvements in income and life expectancy. Between

1910 and 2010, per capita GDP growth has averaged 0.8% per year. The population of

the region grew tenfold over this timeframe, an average of 2.3% per year. Life expectancy

at birth rose from 27 years in 1910 to 54 years in 2010, an average increase of 0.7% per

year.
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Figure 5: Life expectancy, population size and GDP per capita in Sub-Saharan Africa:

levels (left panel) and decadal growth rates (right panel)

Two important questions arise from these empirical features. The first involves the

nature of the relationship between population size, life expectancy and economic perfor-

2This was performed using the Stata DASP package; see Araar and Duclos (2007).
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mance, and the second is to find out how population size and life expectancy affect social

welfare. Many authors have explored the first question since the time of Malthus, but the

debate remains unresolved. Some authors have recently suggested that these relationships

depend on the nature of the economy being studied. For instance, Weil and Wilde (2009)

found that the effect of population size on economic performance depends on the elasticity

of substitution between land and other economic factors. For countries where this elasticity

is low (developing countries), population size penalizes economic performance (Malthusian

view), whereas the Malthusian view is not relevant in countries with a high elasticity of

substitution (developed countries). The effect of life expectancy on per capita income is

also ambiguous: Cervellati and Sunde (2009) found that life expectancy does not have a

clear impact on economic development until the onset of the demographic transition, but

that this effect is positive afterwards.

These developments make it more useful for our empirical application to focus on

the second goal mentioned above: to determine the effect of population size and life

expectancy on social welfare. The objective here is to show how the measured level of

development differs when life expectancy and population size are considered in addition

to living standards. In this regard, we first examine in the next sections the temporal

evolution of each of our three variables of interest: income distribution, length of life and

population size.

4.2 Evolution of income distributions in Sub-Saharan Africa

Figure 6 and figures 13, 14 and 15 (in the appendix) present a general description of income

distributions in SSA over the 1910-2010 period. They provide a robust ordering of income

distributions in terms of poverty, inequality and social welfare. Despite the explosion of

population and increased inequality (Figure 13 in the appendix), all the social ordering

criteria show a continous improvement of welfare in SSA between 1910 and 2010. Figure

6 compares 1910, 1960 and 2010 using the quantile curve that corresponds to a first-order

dominance criterion for ranking income distributions. The quantile curve dominance is

defined such that a distribution A dominates another distribution B if and only if, for all

percentiles p, the income quantile QA(p) = F−1A (p) is greater than QB(p) = F−1B (p), where

F refers to the cumulative income distribution function. If populations A and B have the

same size, A dominates B according to this criterion if and only if for any individuals iA

and iB of the same rank (in their respective income distributions), iA is always richer than

iB. Thus, quantile curve dominance is stronger than the second order dominance criteria

such as the generalized Lorenz dominance and generalized concentration dominance.

Therefore, as expected, the generalized Lorenz dominance confirms the improvement

of incomes over the 1910-2010 period (Figure 14 in the Appendix). Recall that this social

ranking criterion is equivalent to using an average generalized utilitarian function for
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Figure 6: Quantile curves of income distributions in SSA over the last century

ranking income distributions. Thus, even if the growth of per capita income was combined

with a rise in inequality, social welfare in the region should be deemed to have significatively

increased over the last century. This indicates that the large increase of per capita income

observed over the studied period has largely compensated (see Figure 14) the increase of

inequality (see Figure 13) in income distribution.

Finally, the critical-level population principle also shows an improvement of social wel-

fare in SSA between 1910 and 2010 for all values of critical-level α ∈ [0, 360], as illustrated

by the critical-level generalized concentration curves plotted in Figure 15 of the Appendix

(abstracting from differences in life expectancy). From an ethical perspective, a critical-

band of [0, 360] appears to be reasonable given that $360 corresponds approximately to the

well-known dollar-a-day poverty line. A greater critical-level can lead to a decrease in so-

cial welfare since 2010 would not then dominate 1910. The next section presents in further

details the demographic patterns associated with these changes in income distributions.

4.3 Demographic transition in Sub-Saharan Africa

Figure 7 provides the temporal evolution of age structures for the different regions of the

world. Developed regions have already passed the so-called critical point of demographic

transition. Beyond this critical point, populations are characterized by relatively high

life expectancy along with a low fertility rate which is equal to the natural population

replacement rate. This results in an increased proportion of older people and a popula-

tion more homogenously distributed among the different age groups. This demographic

transition has also been happening in the developing world. In recent years, many devel-

oping countries have indeed experienced trends towards significantly lower fertility rates
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and increased life expectancy. Figure 7 clearly shows that in 2010, less developed regions

(excluding SSA) have an age structure similar to that of developed regions in 1950. This

points out a delay of approximatively half of a century between developed regions and less

developed regions in the process of demographic transition. A large part of the popula-

tion (45%) in less developed regions (excluding SSA) is young (aged less than 24 years).

This age structure is changing gradually and the demographic transition is expected to be

completed soon for these regions, which include most of the countries in Asia and Latin

America.
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Figure 7: Age pyramids for the different regions of the world between 1950 and 2010

SSA is an exception to these trends among less developed regions. As shown in the

figure, the age structure of the region has not significatively changed between 1950 and

2010 and remains similar to that of other less developed regions 50 years ago. SSA infant

mortality rates remain very high indeed, at 77 per thousand in 2010. This results in a

very low life expectancy as illustrated in Figure 8. The mortality risk is very high during

early childhood and begins to decrease from five years of age. In general, Figure 8 shows

an increase of life expectancy at all ages between 1970 and 2010, with a more significant

improvement for newborns and children. Life expectancy at birth increased from 46 years

in 1970 to 54 years in 2010, an annual average increase of 0.4%. SSA fertility rates also

remain high and overcompensate for the mortality levels. Demographic growth in SSA

is the highest in the world, at 2.5% per year in 2010. The population expanded fivefold

over the 1950-2010 period, for an average annual growth rate of 2.6%. As a consequence,

population in SSA is largely composed of young people leading to a high dependency ratio
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with respect to other less developed regions. More than half of the population in SSA is

young (aged less than 24 years). Considering this particular demographic context, how

does the assessment of social welfare differ when changes in population size and longevity

are also considered in addition to changes in income distribution? The following sections

provide some insights into this question.
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Figure 8: Age-specific life expectancy in SSA between 1970 and 2010

5 Welfare comparisons in a context of demographic changes:

The case of Sub-Saharan Africa

In this section, we illustrate the different dominance criteria defined previously by per-

forming welfare comparisons in a context of demographic change. As mentioned earlier,

this amounts to comparing social states of the world defined by a utility matrix with two

dimensions: individuals and time periods. Such matrices are defined for different regions of

the world when performing regional comparisons and are defined for different time periods

for temporal comparisons. We are particularly interested in assessing the temporal evolu-

tion of welfare in Sub-Saharan Africa during the last century by accounting for changes

in incomes, longevity and population size. Thus, for some date t, we need the distribution

of welfare over the course of the life of each Sub-Saharan African citizen alive at date t,

including his past and future utilities. Incomes in each period are used as a proxy for util-

ities in those periods. Thus, the main challenge of the empirical application is to obtain

the lifecycle distributions of income, which are not provided by household living standards

surveys. In the next sub-sections we describe the methodology used to build the matrices
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of temporal income distributions and present some of the results.

5.1 Estimation of matrices of income distribution

The limited empirical literature on intertemporal welfare relies on household panel surveys,

which provide the best data on temporal income distribution (Deaton and Paxton, 1994;

Hoy et al., 2010; Maasoumi and Zandvakili, 1986, 1990; Rodgers and Rodgers, 1993; Salas

and Rabadan, 1998). Unfortunately, the longest household panel datasets usually cover

roughly thirty years and thus do not encompass entire lifetimes. We thus need an estimate

of the lifecycle distribution of incomes in a given population using available household

survey data. One approach is used in labour economics to estimate an individual’s earning

profile over the course of his life as a function of personal characteristics and his economic

environment (see, for example, Heckman et al., 2003; Lemieux, 2006; Mincer, 1974). But

these methods cannot be used to estimate income before entry into the job market, and

also do not account for the changing income distribution within the population.

Our estimation technique relies on the three different types of data presented previ-

ously: i)the distribution of income among individuals for each year from 1820 to 2010,

ii)population sizes, age structures and life expectancies by age in each year and iii)an

income transition matrix from one year to another. For simplicity, we apply an estimated

2008/2009 decile transition matrix of Egypt for each year of the studied period. This

decile income transition matrix is estimated from the Egyptian quintile income transition

matrix provided by Marotta and Yemtsov (2010).

Table 1: Income transition matrix, Egypt, 2008-2009 (estimated)

Decile income group 2009

1 2 3 4 5 6 7 8 9 10 Total

D
e
c
il
e
in

c
o
m
e
g
ro

u
p

2
0
0
8

1 0.43 0.20 0.15 0.05 0.07 0.04 0.04 0.01 0.00 0.01 1.00

2 0.22 0.37 0.19 0.11 0.07 0.02 0.01 0.01 0.00 0.00 1.00

3 0.13 0.21 0.22 0.17 0.10 0.04 0.06 0.04 0.03 0.01 1.00

4 0.07 0.10 0.14 0.20 0.23 0.11 0.09 0.04 0.00 0.02 1.00

5 0.03 0.07 0.13 0.18 0.20 0.15 0.10 0.07 0.04 0.04 1.00

6 0.05 0.08 0.05 0.11 0.10 0.15 0.22 0.12 0.08 0.03 1.00

7 0.03 0.01 0.05 0.10 0.12 0.22 0.25 0.10 0.08 0.04 1.00

8 0.02 0.02 0.05 0.07 0.04 0.12 0.13 0.23 0.23 0.08 1.00

9 0.00 0.01 0.03 0.03 0.04 0.12 0.08 0.24 0.35 0.11 1.00

10 0.01 0.00 0.01 0.01 0.02 0.04 0.03 0.08 0.23 0.55 1.00

Source: Authors’ estimates using Egypt transition matrix of Marotta and Yemtsov (2010).

Within this empirical framework, we estimated the income distribution matrices for

the dates 1910, 1960 and 2010 using the procedure described below:

1. For each year from 1820 to 2070, we generate samples of annual income distributions,

weighted by population size, using data from Bourguignon and Morrisson (2002) and
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the growth rates of per capita income published by the World Bank (2013) for recent

periods;

2. Using information on age structures and life expectancies in the population at their

respective ages, we assign an age and a date of the death to each individual in each

year of the analysis: 1910, 1960 and 2010;

3. For each individual in the sample, we generate prospective and retrospective in-

come deciles using current income and the estimated decile transition matrix and its

transposition, respectively;

4. Given an individual’s decile at a given year, we draw annual incomes for the corre-

sponding year from the samples of income generated in step 1.

5.2 Empirical results

5.2.1 Evolution of overall welfare in SSA over the last century

Using the estimation technique described previously, we constructed two matrices of life-

cycle income distributions for the dates 1910 and 2010. We then rank the two matrices

using the different intertertemporal social evaluation criteria discussed and developed pre-

viously. To do this, we apply the dominance criteria to the OPEP income distribution

vector of the matrix distribution. Thus, we first transform the matrices of income distri-

butions into vectors of income distributions by concatenating lifecycle distributions of the

different individuals. We then rank the OPEP income distributions using the different

social evaluation criteria.
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Figure 9: Intertemporal quantile curves dominance of 2010

versus 1910 for SSA using OPEP income distributions
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Figure 9 presents the first-order dominance results using the intertemporal quantile

curve ordering. It shows that even when changes in population size and longevity are

taken into account, social welfare in SSA can be deemed to have increased significantly

between 1910 and 2010. As expected, this first-order dominance leads to the second-order

dominance as measured by the intertemporal generalized Lorenz dominance (Figure 16

in the Appendix). This means that despite the explosion of the population and a more

limited improvement in longevity observed in SSA over the last century, 2010 strongly

dominates 1910.

We then perform the welfare assessment using the multi-period critical-level population

principle developed in Section 3. To do this, we first need to define the value of the multi-

period critical-level α, which is an essential element in the analysis. Given the previously

mentioned criticisms regarding the choice of α, here we investigate the dominance of 2010

versus 1910 for a set of critical-level values, using the multi-period critical-band utilitarian

dominance criterion. The results indicate that social welfare in SSA can be shown to

have increased significantly between 1910 and 2010 – i.e. the 2010 critical-level temporal

generalized concentration curve is never beneath that of 1910 – for α = 0 (Figure 17 in the

Appendix). Indeed, this is true for all values of α up to $180 (Figure 10). Using Corollary

1, this implies the dominance of 2010 over 1910 for all values of α ∈ [0, 180].
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Figure 10: Multi-period CLGU dominance of 2010 versus 1910

for SSA using OPEP income distributions

From an ethical perspective, an upper bound for the critical level of $180, or approx-

imately half of the dollar-a-day poverty line, appears to be reasonable. Higher values for

the critical level imply that the existence of individuals whose utilities in each period are

below the poverty line is welfare-decreasing, even if the welfare of the existing population
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is unaffected. The estimates of the upper bound of the multi-period critical level (for

dominance of 2010 versus 1910) may be viewed as the income threshold at which targeting

populations with birth-control (or pro-natalist) policies increases (decreases) welfare. To

get an idea of the magnitude of these dominance relationships, we compute numerical

values and changes of social welfare from 1910 to 2010 for some specific functions.

5.2.2 Numerical illustration using cardinal measures of social welfare

Tables 2 and 3 provide numerical values and changes (in %) of social welfare in SSA over

the last century for the main atemporal and intertemporal social evaluation functions.

Results of the different value functions indicate the contribution of length of life and

population size in social welfare. For a given date (1910, 1960 or 2010), the atemporal

case computes values and changes in social welfare by considering the distribution of

incomes in that year instead of considering the lifecycle distributions of incomes as done

in the intertemporal case. Thus, the length of life and the lifecycle approach only come

into play in the intertemporal case. We consider here the class of second-order inequality-

averse value functions3, which use a transformation of utilities g(u) = log(u). Four types of

social evaluation principles are considered: the Average Generalized Utilitarianism (AGU),

the Classical Generalized Utiliatarianism (CGU), the Periodic Critical-Level Generalized

Utilitarianism (P-CLGU) and the Lifetime Critical-Level Generalized Utilitarianism (L-

CLGU). We set the periodic critical value α = $180, which is equal to the upper bound of

critical for the dominance of 2010 over 1910 determined previously. The lifetime critical-

level is simply the periodic critical-level times 60 years (a constant length of life arbitrarily

fixed around the current value of life expectancy at birth in SSA).

Table 2: Values of social welfare in SSA from 1910 to 2010, case 1

Atemporal Intertemporal

1910 1960 2010 1910 1960 2010

AGU∗ 6.24 6.54 6.90 6.19 6.56 6.96

CGU 440.34 1204.82 4897.49 22820.49 81939.92 373597.89

P-CLGU 73.98 247.58 1210.63 3670.27 17068.46 94285.88

L-CLGU 81.52 380.90 1947.07

∗ All the values are in billions of log-dollars except that of the AGU function which

are in log-dollars

Three main findings from this numerical illustration are worth noting. First, all the

social evaluation functions confirm the continous improvement of welfare in SSA over the

3Results for the first-order value functions are provided in the Appendix.
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period 1910–2010 as shown by the ordinal rankings presented previously. Second, the

magnitudes of increase in social welfare are more important in the intertemporal case,

highlighting the positive contribution of increased longevity in social welfare. Finally, the

per capita approach, as illustrated by the AGU principle, concludes that social welfare has

not significatively increased between 1910 and 2010 (only +12% over a century) compared

to the other methods which show an important increase in social welfare (more than tenfold

between 1910 and 2010). Whereas the per capita income-based approach reveals a limited

improvement in social welfare in SSA between 1910 and 2010 due to the rise of inequality

and an explosive population growth, the CGU and the CLGU principles show an increase in

social welfare given the positive contribution of population growth and increased longevity.

Note also that the P-CLGU and the L-CLGU approches lead to the same results in terms of

relative improvement in social welfare. To confirm the contributions of population growth

and increased longevity in welfare assessment, we cover next the impacts of changes in

population size and life expectancy on the evolution of social welfare in SSA from 1910 to

2010 by simulating some hypothetical demographic patterns using the multi-period critical

level approach.

Table 3: Changes in social welfare in SSA from 1910 to 2010, case 1

Atemporal Intertemporal

1910-1960 1960-2010 1910-2010 1910-1960 1960-2010 1910-2010

AGU 5% 6% 11% 6% 6% 12%

CGU 174% 306% 1012% 259% 356% 1537%

P-CLGU 235% 389% 1536% 365% 452% 2469%

L-CLGU 367% 411% 2288%

5.2.3 Effects of population size and life expectancy on social welfare

In order to isolate the net effect of changes in population size and life expectancy on

social welfare, we consider some hypothetical scenarios and simulate the resulting social

rankings in the case of SSA. The two main scenarios considered are: 1) the population

remains constant while life expectancy and incomes vary as observed from 1910 to 2010

and 2) life expectancy remains constant while population size and incomes vary as observed

from 1910 to 2010.

Figure 11 indicates that if the population had not expanded over this time frame

(scenario 1), 2010 would dominate 1910 for all values of α. This result is consistent with

a social ranking based solely on per capita income since critical-level utilitarianism is

equivalent to average utilitarianism in this scenario. This implies that, in the present case,
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Figure 11: Multi-period CLGU Dominance of 2010 versus 1910

for SSA with constant population size (1910)

the demographic growth observed in SSA between 1910 and 2010 appears to have worsened

the social welfare of the region if we use a critical-level value greater than $180. This

corroborates recent findings that population growth and economic development appear to

be negatively related in poor countries (Weil and Wilde, 2009).
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Figure 12: Multi-period CLGU dominance of 2010 versus 1910

for SSA with constant life expectancy 1910

Figure 12 shows that the social ranking results would have been the same even if life

expectancies had not increased between 1910 and 2010 (scenario 2). This suggests that the

effect of changes in population size largely dominates that of life expectancy according to

the critical-level approach. Recall that the multi-period critical-level utilitarian function
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exhibits some degree of substitutability between population size and life expectancy. In

this context, it appears as though the effect of life expectancy on social welfare is not

significant due to the exponential increase of population size observed during the same

period. This result to some extent clarifies recent findings by Cervellati and Sunde (2009),

suggesting that life expectancy does not have a clear impact on economic development

until the onset of the demographic transition, but this effect is positive afterwards.

6 Conclusion

In a context of demographic change, public policies are often evaluated by comparing

social states of the World in which population size and longevity differ. This requires

social evaluation principles to be set in an intertemporal framework that allows for trade-

offs between standards of living, longevity and population size. Using the intertemporal

social evaluation functions developed in the literature (Blackorby et al., 1995; Duclos

and Housseini, 2013), this paper establishes a dominance criterion for welfare comparisons

when populations differ in size and longevity and test it using historical data on population

size, longevity and income distributions. More precisely, we build on dominance criteria

for timeless social evaluation principles (Kakwani, 1984; Shorrocks, 1983; Trannoy and

Weymark, 2009) and establish multi-period critical-level utilitarian dominance, defined

by setting up a temporal version of the generalized concentration curve. We ultimately

use this dominance criterion, as well as other intertemporal social evaluation principles

in the literature, to assess the evolution of welfare in Sub-Saharan Africa between 1910

and 2010, jointly considering changes in and levels of life expectancy, population size and

income distributions. This involves estimating the lifecycle income distribution of Sub-

Saharan Africans in 1910 and 2010.

We contrast social ranking based solely on per capita income with the results using

intertemporal social evaluation criteria such as the multi-period critical-level utilitarian

dominance developed in the paper. Whereas the per capita income-based approach reveals

a limited improvement in welfare in SSA between 1910 and 2010, the multi-period critical-

level utilitarian approach shows an increase in social welfare if and only if the critical

level of annual income – at which a life can be considered as social welfare-increasing

– is less than or equal to $180, i.e. roughly half the well-known dollar-a-day poverty

line. We found that, when we use a critical value of greater than $180, the demographic

growth observed in SSA between 1910 and 2010 appears to have worsened social welfare

for some intertemporal critical level social welfare functions. Our estimates of the upper

bound of the critical value (for the dominance of 2010 over 1910) may be viewed as the

income threshold at which targeting a population for birth-control policies unambiguously

increases welfare. We also found that according to the critical-level approach, the effect
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of the life expectancy on social welfare in Sub-Saharan Africa is not significant given the

exponential increase of population size observed during the same period. This result to

some extent clarifies recent findings by Cervellati and Sunde (2009) that indicate that life

expectancy does not have a clear effect on economic development until the onset of the

demographic transition, while this impact is positive afterwards.

Appendix

A.1. Proof of Theorem 1

Proof. Consider α ∈ R and U,U ′ ∈Mu.

From (12), ũ �TGCα ũ′ ⇔ TGCũ
α,T (ũ,ũ′)

≥ TGCũ′
α,T (ũ′,ũ)

.

For fixed populations with the same longevity, it follows from their definitions that

temporal generalized Lorenz dominance coincides with multi-period critical-level α gener-

alized concentration curve dominance for any value of α ∈ R, that is to say that in the

case of populations with the same size and the same longevity,

U �PCLα U ′ ⇔ ũ �TGCα ũ′. (19)

For variable populations with different life expectancies, we use the multi-period critical-

level principle and build on the augmented temporal utility vectors to show the equivalence.

If n 6= n′ and/or T 6= T ′, we know that U ∼ ũα,T (ũ,ũ′) and U ′ ∼ ũ′
α,T (ũ′,ũ)

. Thus,

U �PCLα U ′ ⇔ ũα,T (ũ,ũ′) �
PCL
α ũ′

α,T (ũ′,ũ)
. (20)

Since ũα,T (ũ,ũ′) and ũ′
α,T (ũ′,ũ)

are vectors of the same dimension, it follows from the

reasoning leading to (19) that:

ũα,T (ũ,ũ′) �
PCL
α ũ′

α,T (ũ′,ũ)
⇔ ũα,T (ũ,ũ′) �

TGC
α ũ′

α,T (ũ′,ũ)
. (21)

Thus, (12), (20) and (21) imply that U �PCLα U ′ ⇔ ũ �TGCα ũ′.

A.2. Proof of Corollary 1

Proof. It follows trivially from the definition of �PCB[α,α] that 1 implies 2. We can now see

that 2 implies 1.

Consider any α ∈ [α, α], and U,U ′ ∈ Mu. Thus, the utility vectors of their corre-

sponding α one-person equivalent population (OPEP) are given by Ũ ∈ RT̃ and Ũ ′ ∈ RT̃ ′ .
Similar to the proof of proposition 3 by Trannoy and Weymark (2009), there are two cases

to consider:
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Case 1: T̃ ≥ T̃ ′, we have:

U �PCLα U ′ ⇔ WPCL
α,g (U) ≥WPCL

α,g (U ′) (22)

⇔ WPCL
α,g (Ũ) ≥WPCL

α,g (Ũ ′) (23)

⇔
T̃∑
t=1

[g(ũt)− g(α)] ≥
T̃ ′∑
t=1

[g(ũ′t)− g(α)] (24)

⇔
T̃∑
t=1

g(ũt) ≥
T̃ ′∑
t=1

g(ũ′t) + (T̃ − T̃ ′)g(α) (25)

Because (T̃ − T̃ ′) ≥ 0, α ≤ α, and the function g is increasing, it follows that:

T̃∑
t=1

g(ũt) ≥
T̃ ′∑
t=1

g(ũ′t) + (T̃ − T̃ ′)g(α) (26)

or equivalently,

T̃∑
t=1

[g(ũt)− g(α)] ≥
T̃ ′∑
t=1

[g(ũ′t)− g(α)]⇔ U �PCLα U ′ (27)

Case 2: T̃ ′ > T̃ , then 2 implies that:

U �PCLα U ′ ⇔ WPCL
α,g (U) ≥WPCL

α,g (U ′) (28)

⇔ WPCL
α,g (Ũ) ≥WPCL

α,g (Ũ ′) (29)

⇔
T̃∑
t=1

[g(ũt)− g(α)] ≥
T̃ ′∑
t=1

[g(ũ′t)− g(α)] (30)

⇔
T̃∑
t=1

g(ũt) + (T̃ ′ − T̃ )g(α) ≥
T̃ ′∑
t=1

g(ũ′t) (31)

Since (T̃ ′ − T̃ ) > 0, α ≥ α, and the function g is increasing, it follows that:

T̃∑
t=1

g(ũt) + (T̃ ′ − T̃ )g(α) ≥
T̃ ′∑
t=1

g(ũ′t) (32)

or equivalently,

T̃∑
t=1

[g(ũt)− g(α)] ≥
T̃ ′∑
t=1

[g(ũ′t)− g(α)]⇔ U �PCLα U ′ (33)

Thus, in both cases, for any α ∈ [α, α], we have shown that:

U �PCB[α,α] U
′ ⇒ U �PCLα U ′. That is, 2 ⇒ 1.

Finally, the equivalence of 3 with both 1 and 2 follows directly from theorem 1.
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A.3. Atemporal social ranking in SSA over the last century
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Figure 13: Lorenz curves of income distributions in SSA over the last century
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Figure 14: Generalized Lorenz curves of income distributions in SSA over the last century
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Figure 15: Critical-level concentration curves of income distributions in SSA
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A.4. Intertemporal social ranking in SSA over the last century
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Figure 16: Intertemporal Generalized Lorenz dominance of 2010 versus 1910 for SSA
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Figure 17: Multi-period CLGU Dominance of 2010 versus 1910

for SSA with α equal to zero
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A.5. Numerical values and changes of social welfare in SSA using social eval-

uation functions with g(u) = u

Table 4: Values of social welfare in SSA from 1910 to 2010, case 2

Atemporal Intertemporal

1910 1960 2010 1910 1960 2010

AU∗ 673.91 994.43 1480.55 775.96 1316.97 2053.81

CU 47.54 183.31 1051.15 2902.03 16920.05 108914.99

P-CLU 34.84 150.13 923.35 2238.24 14671.45 99233.39

L-CLU 1986.19 14493.29 99644.79

∗ All the values are in billions of dollars except that of the AU function which

are in dollars

Table 5: Changes in social welfare in SSA from 1910 to 2010, case 2

Atemporal Intertemporal

1910-1960 1960-2010 1910-2010 1910-1960 1960-2010 1910-2010

AU 48% 49% 120% 70% 56% 165%

CU 286% 473% 2111% 483% 544% 3653%

P-CLU 331% 515% 2550% 555% 576% 4334%

L-CLU 630% 588% 4917%
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