Insights from Structural Models of Human Capital Formation: measurement error and predictive validity

Orazio P. Attanasio

UCL, EDePo@IFS & NBER

ECD and Nutrition Measurement during the first 1000 days World Bank - February 4th 2015

<ロト <四ト <注入 <注下 <注下 <

Introduction

2 Human Capital Formation

3 Measurement system

Application

- Measures
- Exploratory Factor Analysis and the Measurement System
- The production function

5 Future Research and Conclusions

▲ 同 ▶ → 三 ▶

'OK', I said, 'You win. Its a good theory...' Randall smiled wryly: 'I don't like it myself. I was just trying it out. It fits the facts as far as I know them. Which is not far.' 'We don' t know enough to even start theorizing' Raymond Chandler, Farewell, My Lovely

Theory needs measurement.

- Theory needs measurement.
- Measurement tools need to be designed to address the needs of theory.
 - Example: Keynesian model and development of National Income and Product Account Statistics.

- Theory needs measurement.
- Measurement tools need to be designed to address the needs of theory.
 - Example: Keynesian model and development of National Income and Product Account Statistics.
- Measurement error is pervasive:
 - Perfect measures do not exist.
- Valid inference need to recognise this and explicitly model the presence of measurement error.

- Theory needs measurement.
- Measurement tools need to be designed to address the needs of theory.
 - Example: Keynesian model and development of National Income and Product Account Statistics.
- Measurement error is pervasive:
 - Perfect measures do not exist.
- Valid inference need to recognise this and explicitly model the presence of measurement error.
- 'Are Two Cheap, Noisy Measures Better Than One Expensive, Accurate One?'
 - Browning and Crossley (AER, 2009)

- The intuition for several independent measures is simple:
- By averaging different measures, one can circumvent the presence of measurement error.

- The intuition for several independent measures is simple:
- By averaging different measures, one can circumvent the presence of measurement error.
- The logic is the same as that of finding a good instrument for a variable affected by measurement error.
 - One measurement can be used as an instrument for the other.
- See also Schennach (Econometrica, 2004).

• Human capital is difficult to measure, especially among young children.

3

< 日 > < 同 > < 三 > < 三 >

- Human capital is difficult to measure, especially among young children.
- It is also recognised that human capital is a multi-dimensional object.
 - Different domains are relevant for well-being.
 - Different skills command different prices in the labour market.
 - Different components of HK play different roles in the process of development.
 - Different components interact with different inputs in the process of development

- Human capital is difficult to measure, especially among young children.
- It is also recognised that human capital is a multi-dimensional object.
 - Different domains are relevant for well-being.
 - Different skills command different prices in the labour market.
 - Different components of HK play different roles in the process of development.
 - Different components interact with different inputs in the process of development
- Different domains are captured by different measurements.
- Different measurements capture different domains.
- A given measure can be influenced by different domains.

- A useful strategy for the modelling of Human Capital and its growth will tackle these issues explicitly.
- Propose a model of human capital accumulation, in its various dimensions.
 - A production function of human capital.
 - Investment behaviour.

- A useful strategy for the modelling of Human Capital and its growth will tackle these issues explicitly.
- Propose a model of human capital accumulation, in its various dimensions.
 - A production function of human capital.
 - Investment behaviour.
- Explicitly assess measurement issues.
 - Measurement error.
 - What domains are captured by what measures.

- A useful strategy for the modelling of Human Capital and its growth will tackle these issues explicitly.
- Propose a model of human capital accumulation, in its various dimensions.
 - A production function of human capital.
 - Investment behaviour.
- Explicitly assess measurement issues.
 - Measurement error.
 - What domains are captured by what measures.
- Cunha et al. (2010) is a useful starting point.

- A model of human capital formation.
 - A production function for human capital.

3

< 日 > < 同 > < 三 > < 三 >

- A model of human capital formation.
 - A production function for human capital.
 - Investment Function
- Mesurements.
 - Measurement error and identification.
 - Different domains.
 - Assembling the right tools.
- Directions for the future.

Introduction

2 Human Capital Formation

3 Measurement system

Application

- Measures
- Exploratory Factor Analysis and the Measurement System
- The production function

5 Future Research and Conclusions

< □ > < □ >

A model of human capital formation.

- Assume parents maximise utility, which is a function of consumption and their children HK.
- Assume that HK evolves according to a production function that depends on past HK and various inputs (as well as parental background).
- HK is a multidimensional object.

A model of human capital formation.

$$\begin{aligned} & \textit{Max}_{\{C_{i,t},\mathbf{X}_{i,t}\}}U(C_{i,t},\mathbf{H}_{i,t+1})\\ s.t. & C_{i,t}+\mathbf{P}_{t}^{\mathsf{x}}\mathbf{X}_{i,t}=Y_{i,t}\\ \text{and} & \mathbf{H}_{i,t+1}=g_{t}(\mathbf{H}_{i,t},\mathbf{X}_{i,t},\mathbf{Z}_{i,t},e_{i,t}) \end{aligned}$$

where $C_{i,t}$ is consumption and \mathbf{P}_t^{\times} is the vector of prices of investments $\mathbf{X}_{i,t}$.

The variables $\mathbf{H}_{i,t}$, $\mathbf{Z}_{i,t}$ and $\mathbf{X}_{i,t}$ are multidimensional:

$$\begin{aligned} \mathbf{H}_{i,t} &= \{\theta_{i,t}^{c}, \theta_{i,t}^{s}, \theta_{i,t}^{h}\} \\ \mathbf{Z}_{i,t} &= \{\theta_{i,t}^{m}, \theta_{i,t}^{f}, \theta_{i,t}^{r}\} \\ \mathbf{X}_{i,t} &= \{\theta_{i,t}^{M}, \theta_{i,t}^{T}\}. \end{aligned}$$

イロト 不得 トイヨト イヨト 二日

Model estimation and identification

• A first objective of this research agenda is to estimate the production function of human capital.

$$\mathbf{H}_{i,t+1} = g_t(\mathbf{H}_{i,t}, \mathbf{X}_{i,t}, \mathbf{Z}_{i,t}, e_{i,t})$$

Model estimation and identification

• A first objective of this research agenda is to estimate the production function of human capital.

$$\mathbf{H}_{i,t+1} = g_t(\mathbf{H}_{i,t}, \mathbf{X}_{i,t}, \mathbf{Z}_{i,t}, e_{i,t})$$

- This involves several problems:
 - endogeneity of investment choices.
 - unobservability of the conceptual constructs we are modelling.
 - Components of human capital
 - Investment
 - Background variables

Model estimation and identification

• A first objective of this research agenda is to estimate the production function of human capital.

$$\mathbf{H}_{i,t+1} = g_t(\mathbf{H}_{i,t}, \mathbf{X}_{i,t}, \mathbf{Z}_{i,t}, e_{i,t})$$

- This involves several problems:
 - endogeneity of investment choices.
 - unobservability of the conceptual constructs we are modelling.
 - Components of human capital
 - Investment
 - Background variables
- Estimation of the investment function.
 - important per se
 - it solves the endogeneity problems

Introduction

2 Human Capital Formation

3 Measurement system

Application

- Measures
- Exploratory Factor Analysis and the Measurement System
- The production function

Future Research and Conclusions

< 4 1 → <

Measurement system

• Cunha et al. (2010) work with a factor model which is very useful.

$$m_t^{kj} = \alpha_t^{jk} \theta_t^j + \epsilon_t^{kj}, \quad j = \{c, s, h, m, f, r, M, T\}, \quad k = \{1, 2, ...\}$$

where:

- m_{t}^{kj} is measurement k corresponding to factor j
- α_t^{jk} are the loading factors
- ϵ_t^{kj} are measurement errors
- The aim is to identify the distribution of the unobservable θ_t^j 's from the observations on m_t^{kj} .

Identification

Assume:

- Measurement errors of different measures are independent.
- Each measurement is affected by only one factor.
 - dedicated measurement system.
- We have at least **3 measurements** per factor.

Identification

Assume:

- Measurement errors of different measures are independent.
- Each measurement is affected by only one factor.
 - dedicated measurement system.
- We have at least **3 measurements** per factor.

Then, from the empirical distribution of **the measurements** m_t^{kj} , it is possible to identify the distribution of **the unobserved factors** θ_t^j and of measurement errors non-parametrically.

• It is possible to allow for correlation between measurement errors of different measures but we need at least two uncorrelated measures per factor.

- It is possible to allow for correlation between measurement errors of different measures but we need at least two uncorrelated measures per factor.
- It is possible to allow more than one factor to affect certain measures (non dedicated measurement system) but we need some measures affected exclusively by a factor (exclusion restrictions)

- It is possible to allow for correlation between measurement errors of different measures but we need at least two uncorrelated measures per factor.
- It is possible to allow more than one factor to affect certain measures (non dedicated measurement system) but we need some measures affected exclusively by a factor (exclusion restrictions)
- While identification does not require functional form assumptions, it is often useful to make specific assumptions to gain efficiency.
 - Advisable to use flexible specification.
 - They should be consistent with the theoretical structure under study.
 - Robustness analysis

- It is possible to allow for correlation between measurement errors of different measures but we need at least two uncorrelated measures per factor.
- It is possible to allow more than one factor to affect certain measures (non dedicated measurement system) but we need some measures affected exclusively by a factor (exclusion restrictions)
- While identification does not require functional form assumptions, it is often useful to make specific assumptions to gain efficiency.
 - Advisable to use flexible specification.
 - They should be consistent with the theoretical structure under study.
 - Robustness analysis
- How many factors? Which measures to which factors?

- It is possible to allow for correlation between measurement errors of different measures but we need at least two uncorrelated measures per factor.
- It is possible to allow more than one factor to affect certain measures (non dedicated measurement system) but we need some measures affected exclusively by a factor (exclusion restrictions)
- While identification does not require functional form assumptions, it is often useful to make specific assumptions to gain efficiency.
 - Advisable to use flexible specification.
 - They should be consistent with the theoretical structure under study.
 - Robustness analysis
- How many factors? Which measures to which factors?
 - Exploratory factor analysis.
 - Prior knowledge and theory.
 - ... available data.

Introduction

2 Human Capital Formation

3 Measurement system

Application

- Measures
- Exploratory Factor Analysis and the Measurement System
- The production function

5 Future Research and Conclusions

joint work with S. Cattan, E. Fitzsimons, C. Meghir and M. Rubio-Codina.

• Data from a RCT to evaluate a stimulation intervention in Colombia.

joint work with S. Cattan, E. Fitzsimons, C. Meghir and M. Rubio-Codina.

- Data from a RCT to evaluate a stimulation intervention in Colombia.
- Observations available at two dates (ages) t and t + 1.
 - age 12-14 at baseline
 - age 30-42 at follow up.

joint work with S. Cattan, E. Fitzsimons, C. Meghir and M. Rubio-Codina.

- Data from a RCT to evaluate a stimulation intervention in Colombia.
- Observations available at two dates (ages) t and t + 1.
 - age 12-14 at baseline
 - age 30-42 at follow up.
- Assume two factors:
 - Cognitive *c*
 - Socioemotional s

joint work with S. Cattan, E. Fitzsimons, C. Meghir and M. Rubio-Codina.

- Data from a RCT to evaluate a stimulation intervention in Colombia.
- Observations available at two dates (ages) t and t + 1.
 - age 12-14 at baseline
 - age 30-42 at follow up.
- Assume two factors:
 - Cognitive *c*
 - Socioemotional s
- Rich data sets including many measures on children development, investments, parental background.

Estimating the production function in Colombia

joint work with S. Cattan, E. Fitzsimons, C. Meghir and M. Rubio-Codina.

- Data from a RCT to evaluate a stimulation intervention in Colombia.
- Observations available at two dates (ages) t and t + 1.
 - age 12-14 at baseline
 - age 30-42 at follow up.
- Assume two factors:
 - Cognitive *c*
 - Socioemotional s
- Rich data sets including many measures on children development, investments, parental background.
- Assume production function:

$$\theta_{i,t+1}^{k} = A_{d}^{k} [\gamma_{1,d}^{k} \theta_{i,t}^{C\,\rho_{k}} + \gamma_{2,d}^{k} \theta_{i,t}^{S\,\rho_{k}} + \gamma_{3,d}^{k} P_{i,t}^{C\,\rho_{k}} + \gamma_{4,d}^{k} P_{i,t}^{S\,\rho_{k}} \\ + \gamma_{5,d}^{k} I_{i,t+1}^{M,\rho_{k}} + \gamma_{6,d}^{k} I_{i,t+1}^{T,\rho_{k}}]^{\frac{1}{\rho_{k}}} e^{\eta_{i,t}^{k}} \\ + \gamma_{5,d}^{k} I_{i,t+1}^{M,\rho_{k}} + \gamma_{6,d}^{k} I_{i,t+1}^{M,\rho_{k}} + \gamma_{6,d}^{K,\rho_{k}} + \gamma_{6,d}^{K,\rho_{k}} + \gamma_{6,d}^{K,\rho_{k}} + \gamma_{6,d}^{K,\rho_{k}} + \gamma_{6,d}^{K,\rho$$

Measures on the target child

- Bayley Scales of Infant and Toddler Development, third edition (Bayley-III)
- MacArthur-Bates Communicative Development Inventories I, II and III Spanish Short Forms
- Infant Characteristics Questionnaire (ICQ) (Bates et al., 1979)
- Early Children's Behavior Questionnaire (ECBQ)

Measures on the mother

- Peabody Picture Vocabulary Test (PPVT)
- Standard Progressive Matrices (RPM) (Raven, 1981)
- Center for Epidemiological Studies Depression scale (CES- D)
- Education attainment

Measures of parental investment

- Family Care Indicators (FCI)
- Time use data (mother)
- Time use data (target child)

Selecting the number of factors

- Kaisers eigenvalue rule
- Cattells scree plot
- Velicers minimum average partial (MAP) correlation rule
- Horns parallel analysis

Selecting the number of factors

Table: Exploratory factor analysis to determining the number of factors Number of factors according to the following methods:

	Kaiser's	Cattell's scree	Velicer's MAP	Horn's parallel
Dimensions to measure:	eigenvalue rule	plot	rule	analysis
Child's skills at $t+1$	2	2	2	3
Child's skills at t	1	2	1	3
Parental investments at $t+1$	2	2	2	3
Mother's skills	2	2	2	4
Wealth	1	1	1	3

< 日 > < 同 > < 三 > < 三 >

Measurement system

Orazio Attanasio

		% Si	gnal
Factor	Measures	Controls	
	Bayley Cognitive	76%	77%
Child's	Bayley Receptive Language	71%	72%
cognitive	Bayley Expressive Language	78%	79%
skills	Bayley Fine Motor	55%	57%
(t+1)	Mac Arthur-Bates Vocabulary	55%	56%
	Mac Arthur-Bates Complex Sentences	38%	39%
	Bayley Cognitive*	74%	67%
Child's	Bayley Receptive Language*	80%	74%
cognitive skills	Bayley Expressive Language*	80%	73%
(t)	Bayley Fine Motor*	68%	60%
(l)	Mac Arthur-Bates Vocabulary*	43%	35%
	Bates Difficult sub-scale (-)	69%	67%
Child's socio-	Bates Unsociable sub-scale (-)	21%	20%
emotional	Bates Unstoppable sub-scale (-)	62%	60%
skills (t+1)	Rothbart Inhibitory Control sub-scale	70%	68%
	Rothbart Attention sub-scale	25%	24%
Childhe and a	Bates Difficult factor* (-)	67%	72%
Child's socio- emotional	Bates Unsociable factor* (-)	19%	23%
	Bates Unadaptable* (-)	34%	40%
skills (t)	Bates Unstoppable* (-)	23%	< 28% < ≡
UCL and EDePo	@IFS) HK models		WB 02.04.2

24 / 30

Measurement system

		% Si	gnal
Factor	Measures	Controls	Treated
	Number of different play materials	96%	97%
Material	Number of colouring books	44%	46%
investments	Number of toys bought	65%	67%
investments	Number of toys that require movement	73%	75%
	Number of toys to learn shapes	73%	75%
	Number of different play activities	95%	98%
Time	Times told a story to child in last 3 days	67%	83%
investments	Times read to child in last 3 days	70%	85%
investments	Times played with child and toys in last 3 days	64%	81%
	Times labelled things to child in last 3 days	65%	82%
	Mothers' years of education*	64%	63%
Mother's	Mother's vocabulary	70%	69%
cognitive	Number of books for adults in the house*	40%	39%
skills	Number of magazines and newspapers	18%	17%
	Revane's score ("IQ") **	60%	59%

Orazio Attanasio (UCL and EDePo@IFS)

WB 02.04.2015 25 / 30

< 日 > < 同 > < 三 > < 三 >

э

The production function: cognitive skills

	Without control	With control	
	function	function	
Child's cognitive skills at t	0.591	0.566	
	(0.043)	(0.057)	
	[0.527,0.67]	[0.489,0.674]	
Child's socio-emotional skills at t	0.03	0.038	
	(0.043)	(0.050)	
	[-0.037,0.106]	[-0.035,0.126]	
Mother's cognitive skills	0.194	0.037	
	(0.049)	(0.131)	
	[0.107,0.264]	[-0.194,0.223]	
Mother's socio-emotional skills	0.06	0.051	
	(0.045)	(0.049)	
	[-0.016,0.126]	[-0.028,0.127]	
Material investments at t+1	0.082	0.397	
	(0.033)	(0.208)	
	[0.036,0.144]	[0.128,0.765]	
Time investments at t+1	0.008	-0.138	
	(0.035)	(0.142)	
	[-0.056,0.057]	[-0.421,0.039]	
Number of children in household at t+1	0.035	0.049	
	(0.026)	(0.030)	
	[-0.009,0.076]	[0.002,0.1]	
Control function for material investments		-0.33	
		(0.218)	
		[-0.715,-0.023]	
Control function for time investment	-	0.156	
		(0.151)	
		[-0.037,0.453]	
Complementarity parameter	0.123	0.07	
	(0.082)	(0.060)	
	[-0.025,0.243]	[-0.032,0.161]	
Elasticity of substitution	1.141	1.075	
	(0.106)	(0.070)	
	[0.976,1.321]	[0.969,1.192]	
Productivity parameter (A)	0.984	0.993	
	(0.012)	(0.011)	
	[0.966,1.005]	[0.972,1.008]	

Orazio Attanasio (UCL and EDePo@IFS)

HK models

WB 02.04.2015 26 / 30

The production function: Socioemotional skills

	Without control	With control
	function	function
hild's cognitive skills at t	0.11	0.122
	(0.044)	(0.059)
	[0.039,0.185]	[0.024,0.222]
uild's socio-emotional skills at t	0.435	0.413
	(0.055)	(0.059)
	[0.374,0.552]	[0.354,0.537]
other's cognitive skills	-0.054	0.116
ũ	(0.066)	(0.142)
	[-0.168,0.046]	[-0.201,0.276]
other's socio-emotional skills	0.151	0.161
	(0.058)	(0.058)
	[0.047,0.233]	[0.046,0.235]
aterial investments at t+1	0.14	-0.32
	(0.043)	(0.198)
	[0.079,0.219]	[-0.529,0.108]
ne investments at t+1	0.119	0.434
	(0.041)	(0.133)
	[0.043,0.181]	[0.17,0.591]
mber of children in household at t+1	0.099	0.073
	(0.026)	(0.027)
	[0.048,0.136]	[0.025,0.113]
ntrol function for material investments		0.477
		(0.204)
		[0.043,0.711]
ntrol function for time investment	-	-0.336
		(0.136)
		[-0.506,-0.068]
omplementarity parameter	0.049	0.006
	(0.077)	(0.056)
	[-0.085,0.158]	[-0.059,0.12]
asticity of substitution	1.051	1.006
	(0.088)	(0.063)
	[0.921,1.187]	[0.944,1.137]
roductivity parameter (A)	0.987	0.992
	(0.016)	(0.012) 4

Orazio Attanasio (UCL and EDePo@IFS)

HK models

WB 02.04.2015 27 / 30

• The production function seems to be well approximated by a Cobb Douglas production function.

- The production function seems to be well approximated by a Cobb Douglas production function.
- Initial conditions matter.
 - Socio emotional skills at t matter for socio-emotional skills at t + 1.
 - Cognitive skills at t matter for cognitive skills at t + 1.
 - Cognitive skills at t matter for socio-emotional skills at t + 1.

- The production function seems to be well approximated by a Cobb Douglas production function.
- Initial conditions matter.
 - Socio emotional skills at t matter for socio-emotional skills at t + 1.
 - Cognitive skills at t matter for cognitive skills at t + 1.
 - Cognitive skills at t matter for socio-emotional skills at t + 1.
- Parental investments also matter.
 - Material investments matter for cognition.
 - Time investment matters for socio-emotional skills.
 - Investment seems to be compensatory.

- The production function seems to be well approximated by a Cobb Douglas production function.
- Initial conditions matter.
 - Socio emotional skills at t matter for socio-emotional skills at t + 1.
 - Cognitive skills at t matter for cognitive skills at t + 1.
 - Cognitive skills at t matter for socio-emotional skills at t + 1.
- Parental investments also matter.
 - Material investments matter for cognition.
 - Time investment matters for socio-emotional skills.
 - Investment seems to be compensatory.
- Parental background only matter through investment.
- The parameters of the production function are not affected by the intervention.

Outline

1 Introduction

2 Human Capital Formation

3 Measurement system

Application

- Measures
- Exploratory Factor Analysis and the Measurement System
- The production function

5 Future Research and Conclusions

Future research and conclusion

- Measurement is key to the testing (and elaboration) of theories of child development.
- Measurement is key to the evaluation and design of intervention.

Future research and conclusion

- Measurement is key to the testing (and elaboration) of theories of child development.
- Measurement is key to the evaluation and design of intervention.
- Measurement is difficult.
 - Measurement tools have to be designed carefully to address the needs of evaluation and theory.
 - Researchers should not shy away from the design of new tools, rigorously tested and piloted.
 - We should go 'native' and let the raw data talk: careful of standardisation procedures, aggregation.

Future research and conclusion

- Measurement is key to the testing (and elaboration) of theories of child development.
- Measurement is key to the evaluation and design of intervention.
- Measurement is difficult.
 - Measurement tools have to be designed carefully to address the needs of evaluation and theory.
 - Researchers should not shy away from the design of new tools, rigorously tested and piloted.
 - We should go 'native' and let the raw data talk: careful of standardisation procedures, aggregation.
- Much exciting research is going on:
 - use of new technologies (EGG, fNRES, eye-tracking, etc.).
 - attempts to measures beliefs, expectations, attitudes.
 - validation and cross validation.