

TECHNO-ECONOMIC ASSESSMENT STUDY FOR ROGUN HYDROELECTRIC CONSTRUCTION PROJECT

OSHPC BARKI TOJIK

Phase II Report: Project Definition Options Risk Analysis

Risk Analysis

Objectives of study

- Summarizes and qualifies the main topics that may affect the project technical feasibility, attractiveness and sustainability.
- Detects weaknesses and proposes mitigation measures.

Methodology

- Identification of the main risks
- Evaluation of the level of risk (Likelihood*Cost of consequences)
- Management of the risks with mitigation measures
- Re-evaluation of the level of risk (Likelihood*Cost of Consequences) after mitigation measures.

• Identification of CAUSES

- 3 main families
 - Natural
 - Technical
 - Economico-Financial
- 2 levels of detail per Family

EVEL 1	LEVEL 2	LEVEL 3						
		Water availability						
		Sediments						
	Hydrology	Construction floods						
		Rare floods						
		GLOFs						
		Salt dissolution in dam foundation						
		Salt intrusion in RB						
		RB-DS important instability						
_		Long-term creeping of faults						
a		Mudflows from Obishur R. and other streams Leakage from reservoir						
5	Geology / Geotechnics /	Leakage from reservoir						
Ē	Geomechanics	Co-sismic displacements						
ž		Reservoir rim slope instability						
_		Dam material: inappropriate survey, inadequate material						
		Structures-Caverns: rock excavation						
		Co-sismic displacements						
		Dam excavation: slope instabilities						
	Tectonics-Seismicity	Earthquakes						
		Temperature						
		Rain						
	Weather	Snow						
		Ice						
		Evaluation of natural conditions						
	Design	Design studies						
		Maximum head in tunnels						
-		Diversion/Tailrace tunnels: construction quality						
g	Construction	Construction experience and technics. Equipment						
-≓	Construction	Construction schedule						
Ξ		Contractual issues						
2	Fabrication	Fabrication technics, materials, schedule						
Ĕ		Contractual issues						
	Maintenance & Operation	Maintenance: Experience of personnel. Schedule and planning						
	Maintenance & Operation	Monitoring programs						
	Decommissioning	Opportunity - Brogadurac						
	Decommissioning	Opportunity - Procedules						
ial Co	Market prices	Materials and equipment: Present and future conditions. Availability. Inflation.						
anc	Energy demand	Mid- and long term changes in demand						
	Funding	Availability of funds. Rates. Insurances.						

Access Reservoir system			Const	tructi	on site	Dam system						Pov	ver &	Energ	y syst	em				Floo	od mai sys	nagen tem	nent				
Permanent access	Construction access	Guilzidan fault area	Karstic structures	Rogun city	Reservoir rim	Site plants	Site equipments	Workers accomodations	Main dam	Stage 1 dam	Cofferdam	Pre-cofferdam	Energy production	EM: Transmission lines	EM: Switchyard	EM: Cable galleries	EM: Transformers	EM: Generator	EM: Turbines	CW: Tailrace tunnels	CW: Power house & TH	CW: Headrace tunnels	CW: Intakes	Surface spillway	High level Tunnels 1, (2), (3)	Mid Level tunnels 1,(2)	Diversion Tunnels 1,2,3

• Identification of Impacts

- 6 systems of project components
 - Dam system
 - Construction site
 - Reservoir system
 - Access
 - Flood management system
 - Power & Energy System

• Risk estimation table

- Level of risk = Likelihood *Cost of consequences
- Risk is expressed in M.\$

- 26 Risk sheets
 - General information (1)
 - Identification (2)
 - Description (before mitigation measures) (3)
 - Mitigation measures (4)
 - Residual risk (after mitigation measures) (5)

		Rogun HPP TEAS Conso	ortium - Phase II - Risk assessment	7/8/2013
(1)	GENERAL INFORMATION		Everg + Water Economics	Sheet n* 7 Risk ID Sat disadution in dem foundation Barn system / Flood management system Refore mitigation After mitigation
(2)	IDENTIFICATION	CAUSE Level 1 Natural Level 2 Geological / Geomechanical Level 3 Salt dissolution in dam foundation	IMPACT SYSTEM (3) COMPONENT (3) L Dam system Main dam 2 Power & Energy system Intake 3 Picod management system Diversion Tunnels 1,2,3 4 Picod management system Mod Level tunnels 1,2) Ficod management system High level Tunnels 1, 2, (2)	
(3)	DESCRIPTION (before mitigation)	CAUSE (5) 1. Leaching of a twithin the laft bank. 2. Leaching of a twithin the laft bank. 3. Leaching of a twithin the laft bank. 4. Leaching of ant within the laft bank. 4. Leaching of ant within the laft bank. 5. Excessive factions of the saft wronge of formathinh fault: the top of the saft wrong get torror. 5. Soft form and the saft bank is discussed on the impossible. 5. Soft form the impossible of such saft is detended not impossible.	IMPACT (5) Evaluation 1. Deformation of foundation and dam body. Consequence stilling of power intake downations. Consequence stilling of power intake downations. Consequence stilling of power intake downations. Note: Note	ADOPTED
(4)	MITIGATION MEASURES	Recommended mitigation measures 1 -2-3-4. Implementation of hydratic barrier / Grouting of the pars of the sub wedge (<1.U) / Montoring of all wedge ring rate / Grouting of the pars of the sub wedge (<1.U) / Montoring of all wedge ring rate / Grouting of the pars of the sub wedge (<1.U) / Montoring of all wedge ring rate / Grouting of the pars of the sub wedge (<1.U) / Montoring of all wedge ring rate / A. Hydraulic barrier downstream the top of the salt wedge is to be inprovided, with pressue being that of the screen's balance top efformed, as an effort and the salt wedge is to be inprevided. - Montoring of subfinition of the salt wedge is to be implemented (measurements) of subfinition of the salt wedge is to be implemented (measurements) of subfinition of volume of volume of the salt wedge is observed. - General monitoring aper Frase G report RP28 is to be implemented (measurements) of subfinition of volume of volume of volume of the salt wedge is observed. - General monitoring tapes of subfinition of salt within the downstream right bank are to be performed.	Recommended mitigation measures 1-3-3-R. Reloction of gradient above top of all wedge Actilized and Gradient above top of all wedge Calibration of lanching model for better assessment of lanching Schwer of eventual lanching progradient Calibration of lanching model for better assessment of lanching Schwer of eventual lanching progradient Calibration of lanching and growting of the top area of the salt wedge are lapide necessary from the modelling of anti-taxing in the salt wedge are lapide necessary from the modelling of anti-taxing and the salt wedge are lapide necessary from the modelling of anti-taxing and the salt wedge are lapide necessary from the modelling of anti-taxing and the salt wedge are lapide necessary from the modelling of anti-taxing and the salt wedge are lapide necessary from the modelling and needs to be verified as soon as sortials. Some information of the salt wedge, by measuring settlements, where allivity variations and regular microsystemetric investigations. measures are still required.	
(5)	RESIDUAL RISK (after mitigation)	CAUSE (5) Leaching of an Unitin Interview Unitin Interview Units Int	1449ACT (S) 2 Advantation 4 Advanta	ADOPTED

• Evaluation of Risk before and after mitigation measures

- Mitigations measures proposed by TEAS permit to decrease level of risk;
- No Major or Extreme risk remains after mitigation measures.
- A few cases have been expressly left at the level of Moderate (even if they could have been ranked at a lower level) in order to keep them as reminders of required further studies or actions.

BEFORE MITIGATION							AFTER MITIGATION								
CONSEQUENCE (Amount in M.USD)								CONSEQUENCE (Amount in M.USD)							
LIKELIHOOD		Insignificant	Minor	Moderate	Major	Extreme	LIKELIHOOD		Insignificant	Minor	Moderate	Major	Extreme		
	1.1		1 1	10 1	00 1	000		1:1		1 10 100 1000					
Almost certain	1:1			6, 14	4B, 11	4A, 7, 17	Almost certain			4B	4A, 11				
Likely	9 :10			10A, 13, 21	16	2, 18, 20	Likely	9:10		13, 14	7, 17				
Moderate	1 :10			5	15C, 19	8A, 12, 15B	Moderate	1:10		6, 10A, 12	15C, 16, 18	15B			
Unlikely	1 :100					1, 3, 8B, 10B	Unlikely	1.100		21	5	8B, 19	20		
Rare	1:1000		15A			9	Rare	1.10.000	9, 15A				1, 2, 3, 8A, 10B		
Extremely rare	1 :10 000						Extremely rare	1.10 000							

-Only 6 risks remain "moderate":

- •Sediments (4A)
- •Active fault with salt-in filling (7)
- •Locally poor quality of rock (17)
- •High hydraulic head upon gates in hydro-tunnels (20)
- •Creep in Faults (11)
- •Seismicity (15B)

PΔ

Energy + Water Economics

NE ET BELLIER

	BEFORE MITIGATION	AFTER MITIGATION					
	6	0					
	6	0					
	11	6					
	2	17					
	1	3					
Total	26	26					

Table 85: Risk Distribution by Severity Level Before and After Mitigation Measures

Sediment (Risk 4A)

- The scarce vegetation and steep river slopes facilitate the movement and transportation of **large granular material** along the river into the future reservoir.
- **In several decades** the abrasive material will reach the intake of the hydro-tunnels putting the operation of the project at risk.
- As a consequence of this a surface spillway has been added to the project at a high elevation in order to significantly prolong the safe useful life of the project.
- Further investigations and studies are to be conducted in the next project stages:
 - To improve **the knowledge** about sediments (characteristics and amount);
 - To optimize the **design for the surface spillway**;
 - To assess the schedule **when** the first part and the totality of the surface spillway will be necessary.

Seismicity (Risk 15B)

- The Rogun Hydropower Project is located in a complex sismo-tectonic context where active faults have been identified with significant quaking and shearing potential.
- The dam itself is located in the tectonic block between the Ionaksh and the Gulizindan faults, two regional thrust faults.
- A design of a rock-fill dam with an impervious core and appropriate thickness of filters to withstand the Maximum Credible Earthquake has been developed.
- Diversion Tunnel N° 3 and the Mid-level Outlet N° 1 cross the Ionaksh fault in their upstream portions.
 These tunnels contribute to the flood management during construction.
- They have a **short period of exposure** (construction period), and appropriate mitigation measures have been envisaged:
 - Tunnels section enlargement and reinforcement together with an additional upstream set of gates to allow for control and repair works
 - At future project stages the refinement estimate of the **co-seismic displacements evaluation** is to be re-evaluated and **the technical solutions** are to be refined for execution purposes.

Risk Analysis - Conclusion

- Large risks at the ROGUN H.P.P. have been drastically reduced thanks to a better understanding of the causes and to the implementation of well adapted design measures and other mitigation plans.
- Among the most salient risks evaluated in this phase of the studies, only six of them have been expressly left at a level of "moderate" risk. They are kept at that level as reminders for the next stage of studies of the necessity of implementing comprehensive mitigation measures.
- Five of them have **natural causes** (sediments, seismicity, active fault with salt in-filling, locally poor quality of rock) while one of them has a **design cause** (too a high hydraulic head upon gates in hydro-tunnels). These six risk cases are then to be considered as representative of the project complexity and difficulty.
- On the basis of these conclusions of the current technical risk analysis, the Rogun Hydropower Project may then continue its development for the next step of the studies, that is to say detailed design of the selected alternative.
- **Further analyses and investigations** must be performed in the next project stages, as recommended in detail.

PHASE 2 – Consultations – Risk Analysis 2014 07 08 12

THANK YOU FOR YOUR ATTENTION

