• Objectives of the implementation studies
 – Establish detailed project schedule and cost estimate for each alternative
 – Input data for economic and financial analysis

• Structure of presentation
 – Project schedule
 – Cost estimate
Project schedule
Project

– Objectives:

- Produce the schedule of works for each dam alternative [1290; 1255; 1220] m asl;
- Identify critical activities and critical path.

– Methodology:

- Software: MICROSOFT PROJECT;
- Identify the main works (hydraulic tunnels, powerhouse, ...);
- Identify the main task (excavation, concrete lining, ...) for each work, and evaluate their duration.

• A detailed implementation schedule (about 270 items)

- Contract activities (technical specifications, tender, evaluation and contract Award, mobilization);
- Roads, site installations, transportation structures;
- River diversion structures and sequences, flood management structures;
- Power system structures;
- Dam works.
Project schedule – Main hypotheses

– Embankment works:
 • 9 months per year, with 3 months of stoppage because of weather conditions (rain, snow and frost);
 • Shell: 11 months per year because of frost.

– Open air works:
 • Aggregate processing: 11 month per year because of frost;
 • Open air concrete: 11 months per year because of frost

– 25 working days per month
– 18 working hours per day.

– Construction rates:
 • Underground works: tunnel excavation and lining (12.5 m/week);
 • Dam: material placement rates (300 000 to 800 000 m³/month)
Project schedule – Critical paths and tasks

– Two critical paths identified

 • **Early generation phase**
 • Powerhouse cavern stabilization works;
 • Powerhouse excavation of units 5 and 6;
 • Concrete and installation of units 5 and 6.

 • **Main dam works**
 • Construction/rehabilitation of transport facilities;
 • Core foundation abutment excavation;
 • Core foundation excavation below elevation 1000 m asl;
 • RCC slab located under the core;
 • Core / embankment.
Project schedule – Contract periods

– Two contract periods in order to reduce as much as possible the overall construction time

• Pre-contract (preliminary works realised by a local contractor)
 • Extracting and stockpile material from quarry 15;
 • Rehabilitation of access roads, Rogun town building, fresh water supply and sanitation, telecommunication;
 • Completion of access tunnel;
 • Rehabilitation of access tunnel;
 • Works diversion tunnel;
 • Contract activities (Technical specifications, tender, evaluation and contract award, mobilization).

• Main contract (works realised by an international contractor)
 • Dam works;
 • Underground works;
 • Permanent equipment;
 • Resettlement works.
Project schedule – Conclusion

– Two contract periods in order to reduce as much as possible the overall construction time:
 • Pre-contract (2 years);
 • Main contract (between 8 years and 11,6 years).

– Total duration of construction:
 • Between 10 and 13,5 years from TEAS validation and GoT’s decision to proceed with the Project;

– Early generation phase:
 • 6 years after river diversion for 1290 and 1255 alternatives;
 • 6,8 years after river diversion for 1220 alternatives.

– A realistic schedule, that nevertheless requires:
 • A good coordination of all activities;
 • An adequate mobilization of equipment and labour as soon as construction begins.

<table>
<thead>
<tr>
<th>Phase</th>
<th>2014 07 08</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHASE 2 – Consultations – Implementation studies</td>
<td>2014 07 08</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Key Dates in months counted from the TEAS validation and GoT decision to proceed with the Project</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time from Pre-Contract (in months)</td>
</tr>
<tr>
<td>TEAS validation</td>
</tr>
<tr>
<td>River Diversion date</td>
</tr>
<tr>
<td>End of cofferdam construction</td>
</tr>
<tr>
<td>End of stage 1 dam construction</td>
</tr>
<tr>
<td>End of dam construction</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TEAS Validation Diversion</th>
<th>1290 masl</th>
<th>1255 masl</th>
<th>1220 masl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commissioning U6 Temp.</td>
<td>73</td>
<td>73</td>
<td>82</td>
</tr>
<tr>
<td>Commissioning U5 Temp.</td>
<td>75</td>
<td>75</td>
<td>84</td>
</tr>
<tr>
<td>End of Erection U4</td>
<td>85</td>
<td>85</td>
<td>85</td>
</tr>
<tr>
<td>End of Erection U3</td>
<td>98</td>
<td>98</td>
<td>98</td>
</tr>
<tr>
<td>End of Erection U2</td>
<td>112</td>
<td>112</td>
<td>112</td>
</tr>
<tr>
<td>End of Erection U1</td>
<td>112</td>
<td>112</td>
<td>112</td>
</tr>
<tr>
<td>Minimum Reservoir level reached</td>
<td>112</td>
<td>94</td>
<td>80</td>
</tr>
<tr>
<td>Temp U5 and U6 shut down</td>
<td>117</td>
<td>114</td>
<td>140</td>
</tr>
<tr>
<td>Commissioning U4</td>
<td>115</td>
<td>101</td>
<td>101</td>
</tr>
<tr>
<td>Commissioning U3</td>
<td>117</td>
<td>114</td>
<td>114</td>
</tr>
<tr>
<td>Commissioning U2</td>
<td>119</td>
<td>116</td>
<td>116</td>
</tr>
<tr>
<td>Commissioning U1</td>
<td>121</td>
<td>118</td>
<td>118</td>
</tr>
<tr>
<td>Commissioning U6</td>
<td>123</td>
<td>120</td>
<td>120</td>
</tr>
<tr>
<td>Commissioning U5</td>
<td>127</td>
<td>122</td>
<td>122</td>
</tr>
</tbody>
</table>
Cost estimate
Cost estimate

– Objectives:
 • **Terms of References**: “The Consultant shall prepare a project definition stage cost estimate for each option for the Rogun HPP with break down in local and foreign currency”.
 • Establish a detailed **Cost estimate** for each alternatives (9)
 • 3 dam alternatives: FSL = [1290; 1255; 1220] m asl;
 • 3 installed power capacities: High, Intermediate, Low.

– Methodology:
 • Identified main items (dam works, underground works, mitigations measures,...)
 • Define a list of **Unit prices**;
 • Establish **Bill of quantities**;
 • Cost = Sum of (Unit prices * Quantities).

– Hypothesis:
 • Basic case: alternative 1290 m asl (a specific analysis);
Cost estimate – Methodology

– Phase 1 cost estimate: existing works
 • A separated cost estimate is included in Phase 1 report;
 • Useful to identify future works included in Phase 2 cost estimate;
 • Total cost of Phase 1 is not considered as input data for economic and financial analysis.

– Phase 2 cost estimate: future works necessary to complete Rogun project
 • Civil works (TEAS)
 • General project cost (mobilizations/demobilization, camps, roads);
 • Dam works (dam fills, dam excavations, grout curtain, grouting galleries);
 • Underground works (Powerhouse works, hydraulic tunnels, access tunnels).
 • Permanent equipment (TEAS)
 • E&M: electro and mechanical equipment;
 • TL/SS: transmission lines;
 • HSS: hydro-mechanical equipment.
 • Administration and engineering (TEAS): respectively 3% and 2% of “civil works + permanent equipment” costs
 • Operation and Maintenance costs (O&M)
 • Environmental and resettlement costs (ESIA)
Cost estimate – Methodology

– Civil works
 • Basic wages of labour;
 • Basic costs of materials delivered to the site;
 • Capital and operating costs of the construction equipment;
 • Site construction contingencies;
 • Overhead and profits.

– Permanent equipment
 • E&M:
 • Based on installed capacity: cost per KW;
 • Evaluating separately turbines, generator;
 and remaining equipment (balance of plant -BOP).
 • HSS:
 • Doesn't depend on installed capacities;
 • Evaluating main components (gates,...)
Cost estimate – Methodology

– Cost estimate does not include:
 • Land acquisition and right of way (both permanent and temporary);
 • Interests during construction;
 • Taxes, duties and levies in Tajikistan, except for the Contractor’s income tax.

– Physical contingencies are considered:
 • Analysis performed for each specific item (civil works and permanent equipment);
 • Mean value is about 11% of civil works + permanent equipment costs.
Cost estimate – Dam works evaluation

– Evaluation takes into account:

 • Material:
 • Type (rockfill, alluvium shell, core,...)
 • Sources of materials
 • Material stockpiles
 • Conditioning processes

 • Ways of transport
 • By trucks / conveyor
 • By roads / tunnels
 • Considered slope and velocities

 • Dam phasing (material placement)
 • 6 dam phases

[Diagram showing stages of dam construction with legend for materials and phases]

Legend:
- Core
- Alluvium shell
- Concrete foundation
- Fine filter
- Rockfill shell
- Bituminous core
- Coarse filter
- Rip rap

Stage 1
Stage 2
Loading station 1
Loading station 2
C1
C2
T1
T2
Implementation studies - Conclusion

• Input data for economic and financial analysis are:

 – Cost estimate:
 • Total cost of the project;
 • Local and foreign components.

 – Implementation schedule:
 • Total duration of construction: between 10 and 13.5 years from TEAS validation and GoT’s decision to proceed with the Project;
 • Capex disbursement curve.
THANK YOU FOR YOUR ATTENTION