

TECHNO-ECONOMIC ASSESSMENT STUDY FOR ROGUN HYDROELECTRIC CONSTRUCTION PROJECT

OSHPC BARKI TOJIK

Phase II Report: Project Definition Options Water management and reservoir operations

STRUCTURE OF THE PRESENTATION

- Inflows
- Regional water allocation context
- Reservoir filling
- Generation during filling period
- Cascade operation
- Sedimentation
- Climate change impact

INFLOWS

- Monthly discharges at ROGUN site from April 1932 to March 2008
- 76 complete hydrological years available constituting consistent and reliable basic data for the studies

REGIONAL WATER ALLOCATION CONTEXT

- The regional water allocation practices are ruled by the ICWC and based on Protocol n° 566 and Nukuss declaration
- The present situation is accepted by all parties:
 - Nurek reservoir is transferring 4.2 km³ per year from summer to winter
 - Water withdrawal allocations are adapted each year by the ICWC depending on the hydrology forecast, Average allocated volumes over the period 1992-2010 are as follows:

Allocation by BVO Amu Darya	Tajikistan	Kirgizstan	Uzbekistan	Turkmenistan	Total
Average allocated	8.845 km ³	0.216 km ³	21.378 km ³	20.960 km ³	51.400 km ³
	17.3%	0.4%	41.5%	40.8%	100%

REGIONAL WATER ALLOCATION CONTEXT

• Actual percentage use of allocated water (1992-2010)

	Tajikistan	Kyrgyzstan	Uzbekistan	Turkmenistan	Aral Sea release
Minimum	67.6%	1.8%	68.3%	74.8%	13.1%
Average	82.8%	51.9%	94.7%	92.9%	140.2%
Maximum	91.4%	100.0%	105.8%	101.4%	488.2%

- Tajikistan is not using its full water share allocation
- As an average, each year 1.57 km³ of allocated water to Tajikistan is not used

RESERVOIR FILLING

- Rogun reservoir is filled using only up to 1.2 km³ of water per year
- 1.2 km³ is the Vakhsh part of unused Tajik water allocation

Alternative	1290 masl	1255 masl	1220 masl
Time to fill Rogun reservoir and reach normal operation level, using a volume of water up to 1.2 km ³ /year	16 years	13 years	9 years

RESERVOIR FILLING

- First years, reservoir filling is limited by the dam construction ⇒Less than 1.2 km³ is used
- Then, the dam is rising faster than the reservoir level
- Compared to « No Rogun » case, and assuming that Tajikistan will use its full water allocation, the Rogun filling has no impact on the downstream Amu Darya discharge.

GENERATION DURING FILLING PERIOD

- During the reservoir filling period, early generation is realized, first with units 5 and 6 and then with all units.
- The additional energy produced by the Vakhsh cascade during the filling period is evaluated in comparison with the No Rogun case:

FSL	Start of early generation (from TEAS validation and GoT decision to proceed with the project)	Additional energy produced over filling period (TWh)	Equiv. years of normal Rogun operation / Filling period (yr)
1290	6 years 3 months	111	7.7 / 16
1255	6 years 3 months	69	5.5 / 13
1220	7 years	37	3.7 / 9

• Objectives:

- Evaluate the impact of Rogun on the Vakhsh River
- Evaluate the energy that can be produced by Rogun and the Vakhsh cascade
- Basic assumption: the present situation is accepted by all parties
 - Proposal: « unchanged flow pattern »
 - Vakhsh modelization to be calibrated on historical operation

- Simulate the Vakhsh river
- 5 HPPs , 2 regulating reservoirs, irrigation withdrawals
- Present situation : Nurek is driving the Vakhsh cascade operation
- Methodology:
 - Understand present Nurek operation
 - Model the present situation in terms of downstream discharge, energy and Nurek reservoir level
 - Add Rogun and optimize Rogun/Nurek operation within the limits found in the previous step

• The best calibration of the Vakhsh operation model is found when imposing the Nurek reservoir level

=> Water volume transferred from summer to winter = 4.2 km³

RESERVOIR OPERATION Rogun / Nurek Coupled operation

- Calibrated operation rule = regulation volume (Volume of water transferred from summer to winter = 4.2 km³)
- This regulation volume is imposed at Rogun, Nurek becomes a run-off-the-river
- Rogun reservoir level is lowered during winter, and filled up in spring/summer (4.2 km³; 30 m level variation for the 1290 m alternative)

- Two scenarios of water withdrawals from the Vakhsh:
- (a) The withdrawals are considered at their current level. The Tajik water share is not entirely used.
- (b) The withdrawals have increased up to the point when the total Tajik water share is used.

• Several configurations : without Rogun, with Rogun 1290, with Rogun 1255, with Rogun 1220

Results

 Average energy / firm energy (the one that is sure to be produced, at the statistical level of 95%)

– Comparison of downstream discharge of the Vakhsh

• Energy Results (Vakhsh Cascade)

Scenario	Average energy (TWh)	Firm energy (TWh)
Without Rogun (a)	19.9	13.0
Without Rogun (b)	19.1	12.5
With Rogun 1290 (a)	35.3	22.8
With Rogun 1290 (b)	34.4	22.4
With Rogun 1255 (a)	33.3	21.7
With Rogun 1255 (b)	32.5	21.2
With Rogun 1220 (a)	31.0	20.1
With Rogun 1220 (b)	30.2	19.6

Conclusion

The entire study has been performed assuming that:

- the additional Rogun reservoir capacity is not used; only the present Nurek regulation volume is used;
- Tajikistan fully utilizes the water allocated to it;
- the seasonal flow pattern downstream of Nurek is kept unchanged.

- Important sediment transport in the Vakhsh river
- Potential impacts
 - Sediment deposit in reservoir
 - \Rightarrow loss of storage
 - \Rightarrow plugging of tunnels entrance (intakes, tunnels spillway,..)
 - Transport in tunnels and equipment

=> erosion

- Sediment transport estimation:
 - 87-140 Mt per year
 - 62-100 hm³ per year
- 100 hm³ taken as main assumption for the study
- No feasible solution to significantly reduce this amount

• Impact on reservoir:

ELECTROCONSULT

COYNE ET BELLIER

Energy + Water Economics

FOR ROGUN HYDROELECTRIC CONSTRUCTION PROJECT

Adaptive Rogun operation

- Phase 1 : active storage is decreasing with time, and sediment level at the dam is rising = yearly drawdown of Rogun is increased to compensate the active storage losses
- Phase 2 : regulation is done partly in Rogun partly in Nurek, because the loss of Rogun active storage is too important.

Multi-level Intake

- Inclined concrete culvert, resting on the bank slope in correspondence with the power waterways inlets, provided with openings at various levels up to the dam crest elevation
 - \Rightarrow Allow for a sediment deposition level higher than the headrace tunnel elevation thus extending the lifetime of the powerhouse

Rogun reservoir and powerhouse life span

	Total volume (hm3)	100 Mm³/year
FSL=1290 masl	13 300	115 years
FSL=1255 masl	8 600	75 years
FSL=1220 masl	5 200	45 years

- Long term safety : surface spillway because tunnel spillways cannot be used anymore
- Ultimate end of life: powerhouse is out of service, river is passing through the surface spillway

CLIMATE CHANGE IMPACT

• Analysis of available data:

- Trend analysis on 1930-2010 period indicate:
 - Increase in precipitations and discharges
 - Increase of 0,5°C per 100 years for the Fedchenko glacier
- Specific studies show a clear recession of glaciers

• Potential impacts:

- Decrease in flood peak volumes due to earlier and longer glaciers melt season
- Temporary increase in average annual discharge

• Possible mitigations:

– Higher storage allow for flexibility to handle hydrology variability

PHASE 2 REPORT – Executive Summary 14/07/2014 24

THANK YOU FOR YOUR ATTENTION

