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Abstract

With soaring food prices in recent years has come alarm about rising poverty in the

developing world. Less appreciated, however, is that many of the poor in agricultural

economies may benefit from higher wages. This paper finds that wages for manual

labor in rural India, both within and outside agriculture, rose faster in districts growing

more of those crops with large producer price run-ups over the 2004-09 period. Based

on a general equilibrium framework that accounts for such wage gains, rural households

across the income spectrum are found, contrary to more conventional welfare analysis,

to benefit from higher agricultural prices.
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1 Introduction

Elevated food prices over the last half decade have provoked a rash of government interven-

tions in agricultural markets across the globe, often in the name of protecting the poor. Of

course, it is well recognized that many poor households in developing countries, especially

in rural areas, are also food producers and hence net beneficiaries of higher prices.1 Even

so, there is another price-shock transmission channel, potentially more important to the

poor, that has received far less attention in the literature: rural wages.2 To what extent

do higher agricultural commodity prices translate into higher wages? For rural India, home

to roughly a quarter of the world’s poor (those living on less than $1.25/day), the answer

to this question can have momentous ramifications. After all, the vast majority of India’s

rural population relies on the earnings from their manual labor, most of which is devoted to

agriculture.3 Any thorough accounting of the global poverty impacts of improved terms of

trade for agriculture must, therefore, confront rural wage responses in India.

Textbook partial equilibrium analysis (e.g., Singh, Squire, Strauss, 1986, Deaton, 1989)

considers only the direct income effect of a price change on household welfare, which, to a

first-order, is proportional to the household’s production of the good net of consumption.

While this approach is useful for understanding the very short-run welfare impacts of price

shocks, it ignores the inevitable labor market repercussions of persistent price changes. In-

sofar as higher agricultural prices lead to higher wages, then, there are three channels of

general equilibrium welfare effects: (1) higher labor income; (2) lower capital (land) income

due to higher labor costs; (3) higher prices for nontradables. To quantify these effects and

obtain the full welfare impact of changes in agriculture’s terms of trade, one needs, first and

1Ivanic et al. (2012), Wodon et al., (2008), and World Bank (2010a) provide recent multi-country as-
sessments of the the welfare impacts of food price increases accounting for such producer gains. See also de
Janvry and Sadoulet (2009) for an analysis along these lines using Indian data.

2Ravallion (1990) surveys the debate in development on the nexus between the intersectoral terms of
trade and poverty. Shah and Stiglitz (1987) provide an early theoretical treatment. In their cross-country
study, Ivanic and Martin (2008) incorporate price-induced changes in wages for unskilled labor derived from
nation-level versions of the GTAP computable general equilibrium model.

3Indeed, rising wages are seen as the major driver of rural poverty reduction in recent decades (Datt and
Ravallion, 1998; Eswaran, et al. 2008; Lanjouw and Murgai, 2009).
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foremost, an estimate of the relevant wage-price elasticity.

A few existing studies estimate wage-price elasticities using long aggregate time se-

ries data from countries that were effectively autarkic in the main food staple (pre-1980s

Bangladesh in Boyce and Ravallion, 1991, and Rashid, 2002; the Philippines in Lasco et

al., 2008), thus raising serious endogeneity issues. Alternatively, Porto (2006) estimates

the wage impacts of changes in traded goods prices using several years of repeated cross-

sectional household survey data from Argentina. In the case of agricultural goods, which

must somehow be aggregated, Porto creates a price index using household expenditure shares

as weights (as does Nicita, 2009). To appreciate the issue involved with this strategy, con-

sider an extreme example. Suppose that a country is a net exporter of cotton and net

importer of wheat, its sole consumption item. Since the cotton industry is a major deman-

der of labor, a rise in the cotton price should lead to higher wages (and, ultimately, higher

welfare); conversely, a rise in the wheat price should have little impact on wages (i.e., only

through an income effect on labor supply). Hence, in this scenario, the correlation between

changes in wages and changes in the expenditure share weighted agricultural price index may

well be close to zero. Clearly, however, this is not the relevant wage-price elasticity for our

purposes. Indeed, as I show in the context of a formal general equilibrium trade model, the

relevant elasticity is one based on a production share weighted agricultural price index.4

Even with the correct wage-price elasticity estimate in hand, one must still wrestle with

what to do about non-traded goods. One option is to simply ignore them; i.e., by assuming

either that they constitute a negligible share of the budget or that their prices are fixed.

Unfortunately, the first assumption is counterfactual, at least in the case of India, and the

second assumption is inconsistent with theory. As I will show, in a multi-sector general equi-

librium model, in which one of the sectors is nontradable, the price of the nontraded good is

increasing in the agricultural price index. Recognizing this possibility, Porto (2006) provides

4A related issue is that prices or unit values obtained from household expenditure surveys (as in Porto,
2006; Marchand, 2012) may not reflect the wholesale prices faced by farmers in a particular region, especially
where government intervention is heavy (as in India).
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one of the few, if only, econometric estimates of the elasticity of nontraded goods prices with

respect to traded goods prices. In India, however, as in most developing countries, reliable

data on prices of services and other nontradables are unavailable. One contribution of this

paper, therefore, is to quantify the nontradable price elasticity without actually estimating

it econometrically.

To evaluate the distributional impacts of changes in agriculture’s terms of trade, I in-

tegrate a three-sector, specific factors, general equilibrium trade model (e.g., Jones, 1975)

into a first-order welfare analysis.5 Appealing to the widely noted geographical immobility

of labor across rural India (e.g., Topalova, 2007, 2010),6 I apply this general equilibrium

framework at the district level, treating each of these several hundred administrative units

as a separate country with its own labor force but with open commodity trade across its bor-

ders.7 This district-level perspective has two implications for empirical implementation of

my approach. First, since each district produces a different basket of agricultural commodi-

ties, differences in the magnitude of wholesale price changes across crops (even if common

across districts), generate cross-district variation in agricultural price (index) changes. Sec-

ond, following the logic of the model, the wage-price elasticity itself is specific to a district,

varying with characteristics of the local labor market.

While my estimation strategy is related to the “differential exposure approach” (Gold-

berg and Pavcnik, 2007) employed in studies of the local wage impacts of tariff reform (most

recently in Topalova, 2010, McCaig, 2011, and Kovak, 2011, 2013), there are several novel

elements. Kovak, for example, uses the same type of theoretical model to motivate his em-

pirical specification, but he has many industrial sectors; there is no distinctive treatment of

agriculture. Moreover, Kovak ignores intermediate inputs, whereas in this paper intermedi-

5Another strand of the literature incorporates second-order (substitution) effects of price increases on
the consumption side based on demand-system estimation (most recently, Attanasio, et al. 2013). Banks et
al. (1996), however, provide evidence that first-order approximations do reasonably well (relative error of
around 10%) for price changes on the order of 20%.

6Kovak (2011) finds no evidence that labor migration matters for local wage responses to trade reform in
Brazil, a country with much higher inter-regional labor mobility than India.

7Capital (land, in agriculture) is also assumed immobile across both districts and production sectors.
Longer-run Stolper-Samuelson effects are not of paramount concern in policy discussion of food price shocks.
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ates play a quantitatively important role in transmitting food price shocks. Finally, Kovak

does not consider the welfare or distributional implications of trade shocks, or of food price

shocks more particularly, which is a point of departure for this paper. Topalova (2010) finds

that tariff reductions during India’s trade liberalization led to a fall in wages, including agri-

cultural wages, and to a rise in rural poverty. Although Topalova’s analysis is reduced-form

and ex-post,8 she interprets her findings through the lens of a specific-factors trade model

with sectorally immobile labor (and mobile capital). Such a model, however, implies that

nonagricultural wages would fall with higher food prices and, hence, that households would

be affected very differently by rising food prices according to the sector in which their mem-

bers are employed. My evidence will show the contrary, that the wage benefits of higher

food prices are similar across employment sectors. More broadly, Topalova’s reduced-form

analysis of trade reform does not speak directly to the impact of shifts in agriculture’s terms

of trade.9 This paper is thus the first to adapt the differential exposure approach specifically

to the agricultural sector and to the question of food-price crises.

My empirical analysis finds that nominal wages for manual labor across rural India re-

spond elastically to higher (instrumented) agricultural prices.10 In particular, wages rose

faster in the districts growing relatively more of the crops that experienced comparatively

large run-ups in price over the 2004-5 to 2009-10 period. Importantly, the magnitude of

these wage responses is broadly consistent with the quantitative predictions of the specific-

factors model. These results have striking distributional implications. Improved terms of

8In other words, rather than predicting distributional impacts from a model based on estimated elastici-
ties, it looks at changes in poverty rates directly. By contrast, Marchand (2012) uses an ex-ante simulation
of household consumption along the former lines to find that the fall in India’s trade barriers during the
1990s would have reduced rural poverty in India.

9In the first place, there were important quantitative restrictions on agricultural trade in India, so it is
not clear how agricultural prices were effectively changed by the tariff reductions. Secondly, after allowing
for separate impacts of agricultural and industrial tariffs on poverty rates, Topolova (2010, p. 19) finds:
“The poverty-tariff relationship seems to be driven by agricultural tariffs.” Taken at face value, this suggests
that higher food prices would lead to a fall in rural incomes, a conclusion virtually impossible to reconcile
with any sensible model of trade.

10In rural India, manual labor by far predominates over nonmanual labor in terms of annual days worked,
and much of the latter is in the public (i.e., nonmarket) sector. Thus, unlike, e.g., Porto (2006) or Nicita
(2009), I do not attempt to estimate separate wage-price elasticities for skilled and unskilled workers.
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trade for agriculture, rather than reducing the welfare of the rural poor as indicated by the

conventional approach (which ignores wage impacts), would actually benefit both rich and

poor alike, even though the latter are typically not net sellers of food.11

In the next section, I sketch the theoretical framework and develop my empirical testing

strategy. Section 3 discusses the econometric issues and the estimates. Section 4 presents

the distributional analysis of food price shocks, comparing the general to partial equilibrium

scenarios. I conclude, in section 5, with a discussion of the Government of India’s responses

to the 2007-08 food price spike, notably its export ban on major foodgrains.

2 General Equilibrium Framework

2.1 Model assumptions

Consider each district as a separate economy with three sectors: agriculture (A) and man-

ufacturing (M), both of which produce tradable goods, and services (S), which produces a

nontradable. The reason it is necessary to distinguish services from manufacturing is simple.

Combining the two into one nontradable nonagricultural sector is tantamount to allowing

changes in agricultural prices to affect the prices of both manufactured goods and services.

Since manufactured goods are, in fact, tradable, this approach would overstate the welfare

impact of changes in agriculture’s terms of trade.

Continuing with the assumptions, output Yi in each sector i = A,M, S is produced with

a specific (i.e., immobile) type of capital Ki, along with manual labor Li and a tradable

intermediate input Ii, using sector-specific production function Yi = Fi(Li, Ii, Ki). In the

case of agriculture, KA is land and IA is, e.g., fertilizer. Intermediate inputs do not play an

essential role, except insofar as the model provides quantitative predictions, in which case

(as we will see) they make a big difference.

11To be sure, the increase in rural wages may lag the increase in consumer prices, and so the conventional
analysis may be more appropriate for the very short run. This paper does not speak to the timing issue.
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In India, as in most developing countries, agricultural production largely takes place on

household-farms using family and hired labor. Moreover, in a given year, these farms typi-

cally produce several crops on the same land (contemporaneously via multicropping and/or

sequentially in multiple cropping seasons) with largely the same workers and intermediate

inputs. Hence, following, e.g., Strauss (1986), I treat the representative farm as a multiprod-

uct firm that chooses among a fixed set of c crops {Y1, ..., Yc} to grow, transforming between

them according to the function YA = G(Y1, ..., Yc), where G is assumed to be homogeneous

of degree one. To account for the huge agroclimatic variation across India, one should think

of the set of feasible crops as varying across districts.

Farmers then choose the particular quantities to grow, the Yj, to maximize total revenue,∑c
j=1 PjYj, where Pj is the price of crop j, subject to the constraint that G(Y1, ..., Yc) = YA

for any given YA. Thus, in this set-up, production value shares sk = PkYk/
∑c

j=1 PjYj

are determined by both agroclimatic conditions and by relative crop prices. Given the

homogeneity of G, there exists a price index PA such that PAYA =
∑c

j=1 PjYj, which upon

differentiation yields

P̂A =
∑
j

sjP̂j (1)

where “hats”denote proportional changes; i.e. x̂ = d log x. This establishes our production

value share-weighted agricultural price index.

Now, we may write profit per acre in agriculture as ΠA = (PAFA(LA, IA, KA) − PIIA −

WLA)/KA, with analogous expressions for average profit per unit capital in manufacturing,

ΠM and in services ΠS, given respective output prices in these sectors, PM and PS. I assume

that manual labor is perfectly mobile across the three sectors but its overall supply is fixed

at L = LA +LM +LS within each district. Thus, in each district economy, there is one type

of labor with a single nominal wage, W , and a unique wage-price elasticity
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ψ ≡ Ŵ

P̂A

(2)

that must be solved for.

Because this is a general equilibrium framework, income effects of changes in factor prices

are fully accounted for. Thus, total income y consists of the sum of value-added (revenue

net input expenditures) across sectors i = A,M, S

y =
∑
i

PiYi − PIIi + E (3)

with an additional exogenous component, E. Though a technical nuisance, the presence of

E suits an important empirical purpose: A significant portion of household income in rural

India comes from (salaried) nonmanual labor; e.g., teachers, police/army, and other civil

servants. The exogeneity assumption on this income can be motivated by thinking about

entry into these professions as requiring an advanced level of education (relative to unskilled

labor), which cannot be acquired in the short-run.12

2.2 Solution and Intuition

We are interested in what happens to the equilibrium wage in this model when the agricul-

tural price index changes, holding other tradable prices constant; i.e., P̂M = P̂I = 0. Given

that farmers are price-takers in all markets, we have (from price equals unit cost)

αLŴ + αKΠ̂A = P̂A (4)

where, under constant returns to scale, the input cost shares in agriculture, the αl, l =

K,L, I, are such that αK + αL + αI = 1. Similar equations hold for the other sectors, each

with its own set of input cost shares. In the interest of clarity and because it will make

12We can also think of rural nonmanual labor as paid for out of a central government budget financed by
urban taxpayers and not contributing directly to output in any rural sector.
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no appreciable difference empirically (see below), I assume equal input cost shares across

sectors from now on.

As I show in Appendix A,

ψ =
βA + δβS
αL + αK

(5)

where the βi = Li/L are the sectoral labor shares and δ ≡ P̂S/P̂A. Note that δ, the elasticity

of the nontradables price with respect to the price of agriculture, is endogenous and needs

to be solved out.13

Before doing so, however, we can gain some intuition for the mechanics of the model

by considering the special case αI = βS = 0; a two-input, two-sector economy (without

nontradables). According to equation (5), in this case ψ = βA, where βA is the share of

the rural labor force in agriculture. Referring to Figure 1, compare equilibrium A, with a

high share of labor in agriculture to equilibrium B with a low agricultural share. At A the

value of marginal product curve in manufacturing (the supply curve of labor to agriculture)

is necessarily very steep; at B it is very flat. Thus, in moving from A to A
′
, a 50% increase

in the agricultural price translates into an almost 50% increase in the wage, whereas, in

moving from B to B
′
, the same price increase leads to virtually no wage increase whatsoever

(in proportional terms).

If we now let αI > 0, then we have ψ = βA/(αL + αK) > βA. So, while the qualitative

prediction is the same, the magnitude of the wage-price elasticity can increase quite a lot

after accounting for the cost share of intermediate inputs. The source of this amplification

effect is the increase in intermediate input use induced by higher agricultural prices, which

boosts the marginal product of labor in agriculture. Because of a greater exodus of labor

from manufacturing in response to agriculture’s improved terms of trade, there must be an

even larger wage increase than was the case in the absence of intermediates.

13Combining (4) and (5) also gives Π̂A/P̂A = 1
αK

(1− αLψ) . So the elasticity of the return on land with
respect to the agricultural price index incorporates the direct (positive) effect of price changes on farm profits
as well as the indirect (negative) effect of price induced wage changes.
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Finally, let us return to δ in equation (5). To solve out this parameter, we must equate the

demand and supply of services, which I discuss in Appendix A. For purposes of exposition,

set αI = 0 again and consider the special case E = 0, in which there is no exogenous source

of income outside of the three sectors. As shown in the Appendix, ψ = δ = βA/(1−βS) > βA

in this case. Thus, the introduction of a nontradable sector also amplifies the wage-price

elasticity. In this economy, a rise in the wage induced by higher agricultural prices reduces

the supply of services; it also increases the demand for services due to an income effect. Both

forces put upward pressure on the price of services so that δ > 0. With the expansion of

the service sector as agricultural prices rise, the supply curve of labor to agriculture becomes

even more inelastic, making the rural wage even more sensitive to these price changes.

2.3 Empirical validation

The advantage of the above machinery is twofold: First, the model tells us what the relevant

wage-price elasticities are and, second, it delivers explicit expressions for these elasticities

in terms of input cost shares, sectoral labor shares, and other parameters, all of which

can be computed from nationally representative data collected by India’s National Sample

Survey (NSS) Organization.14 I thus calculate district (d) specific wage-price elasticities,

ψd, assuming equal input cost shares across sectors,15 for 472 districts in the 18 major

states of India (See Appendix Table C.1 for descriptive statistics).16 Generally speaking,

the estimated elasticities are high (ψ = 1.15), reflecting large values of βA. Indeed, for the

average rural district, around three-quarters of manual labor days (adjusted for efficiency

14An exception is the share of aggregate income from exogenous sources, or E/y (cf., Appendix A), which
is computed at the state-level from IHDS data described below.

15While it is straightforward to allow for sector-specific input cost shares using the results in Appendix A,
it is somewhat messy. Fortunately, it hardly matters, because they yield virtually identical elasticity results
as in the equal shares case. Cost shares of value-added for Indian manufacturing and service sectors based
on national accounts are available from Narayan et al. (2012). As it turns out, however, the ratio of capital
to labor shares are what is most relevant to our calculations, and these are quite similar across sectors.

16Excluded are the peripheral states of Jammu/Kashmir in the far north and Assam and its smaller
neighbors to the north and east of Bangladesh. Included states, organized into five regions, are North:
Harayana, Himachal Pradesh, Punjab, Uttar Pradesh, and Uttaranchal; Northwest : Gujarat and Rajastan;
Center : Chhattisgarh, Madhya Pradesh, Maharashtra, and Orissa; East : Bihar, Jharkhand, and West
Bengal; South: Andhra Pradesh, Karnataka, Kerala, and Tamil Nadu.
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units; see Appendix B.2) are spent in agriculture. Note also that intermediate inputs play

a quantitatively important role in the elasticity calculation; if I assume that αI = 0, then

ψ would drop to 0.85. In other words, the input amplification effect on the wage-price

elasticities, discussed in the previous section, is substantial.

In principle, one could econometrically estimate separate wage-price elasticities for each

district and compare them to their theoretically implied counterparts above. In practice,

however, this would require long time-series of wages and prices for each district over a period

of structural stasis.17 In lieu of such data, I estimate the regression analog to the identity

given by equation (2), or

∆wd/ψd = c+ γ
∑
j

sd,j∆pj + εd (6)

where c is an intercept, γ is a slope parameter, and εd is a disturbance term for each district d.

Thus, equation (6) replaces Ŵ and P̂A by their empirical counterparts; ∆wd is the difference

in log wages between years t−k and t and the ∆pj are the corresponding time-differences in

log prices of crop j, which are weighted by production value shares sd,j as already discussed.

Under the null hypothesis, which is that the model and all its auxiliary assumptions

holds true on average, we have γ = 1. In other words, under the null, the magnitude of

observed wage responses to actual changes in the agricultural price index correspond (in an

average sense) to what the theory says they should be. Several econometric issues arise in

implementing equation (6), including potential endogeneity of price changes. These are left

for Section 3.4.

17India’s quinquennial labor force survey, available since 1983, would yield, at best, five first-differenced
wage observations per district. Alternatively, Jayachandran (2006) examines a 30-year agricultural wage
series for Indian districts. Although these data fall entirely within the pre-reform (largely autarkic) trade
regime, Jayachandran estimates a national-level wage elasticity with respect to agricultural TFP, instru-
mented with rainfall shocks. One of the difficulties with interpreting this as an estimate of ψ, however,
is that the year-to-year TFP shocks induced by annual rainfall deviations are unanticipated and thus are
unlikely to give rise to the sectoral labor reallocations underlying the general equilibrium model of this paper.
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3 Empirical Analysis

3.1 Domestic agricultural markets

Since at least the 1960s, Indian governments, both at the national and state level, have

intervened extensively in agricultural markets. Interstate trade in foodstuffs is often severely

circumscribed through tariffs, taxes and licensing requirements (see Atkin, 2011, for a review)

with some states (e.g., Andhra Pradesh) going so far recently as to prohibit the exportation

of rice to other states (Gulati, 2012). The Government of India also sets minimum support

prices (MSPs) at which major food crops are, or at least can be, procured for eventual

release into the nationwide public distribution system (PDS). In practice, however, the level

of procurement, and thus the extent to which the MSPs are binding, varies greatly by crop

and state, and even within states (Parikh and Singh, 2007). The principal foodgrains, rice

and wheat, have, in recent years, been the overwhelming focus of government procurement

efforts, concentrated in the states of Punjab and Haryana, often for lack of storage capacity

and marketing infrastructure elsewhere. By contrast, procurement of pulses and oilseeds

has been minimal, as market prices have consistently exceeded MSPs.18

During and after the sharp run-up in international food prices in 2007-08, the Government

of India imposed export bans on rice, wheat, and a few other agricultural commodities in an

attempt to tamp down domestic price increases. Meanwhile, over several consecutive years,

MSPs for rice and wheat (and most other major crops) were raised substantially, partly in

response to international prices; huge stockpiles of foodgrains were subsequently accumulated

through government procurement (World Bank, 2010b; Himanshu and Sen, 2011).

The upshot of these interventions is that output prices faced by Indian agricultural pro-

ducers do not always perfectly track those in international markets.19 Moreover, since

18See the reports by the Commission for Agricultural Costs and Prices on http://cacp.dacnet.nic.in/ for
more details.

19This is true for the principal intermediate input in agriculture as well. Despite a substantial upsurge in
the international prices of chemical fertilizers beginning in 2007, retail prices in India, which are set by the
central government, remained uniform and unchanged over the 2004-09 period (Sharma, 2012).
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domestic market integration is somewhat limited (especially in the case of rice), there is con-

siderable variability across states in crop price movements. On the one hand, this variation

may reflect differential transmission of exogenous price pressure (e.g., because of varying

levels of state procurement or exposure to trade, both with other countries and with other

states); on the other hand, it may reflect localized supply or demand shocks, which can also

drive rural wages directly.

3.2 Crop prices

Wholesale crop price data averaged at the state level from observations at several district

markets per state (and weighted by district production), are compiled by the Ministry of

Agriculture, as are production and area data at the district level. So as to focus on a period

of substantial price movement, as well as to match the NSS wage data (see below), I consider

state-level price changes between the 2004-05 and 2009-10 crop marketing seasons. Given

the relative ease of moving produce across district (as opposed to state) lines, state-level

wholesale prices seem the appropriate measure of farmer production incentives.20

I base the crop value shares, the sd,j in equation (6), on production data from the 2003-04

crop-year, which has the best district/crop coverage for the pre-2004-05 period. Value of

production is calculated at 2004-05 state-level prices. Note, however, that I do not take the

value-weighted sum of price changes across every single agricultural product grown in India.

Price data for many of the minor field crops and the tree crops are incomplete or not reliable.

Moreover, the associated production data are often inaccurate (especially for vegetables and

tree products). I thus select major field crops according to the criteria that they cover at

least 1 percent of total cropped area nationally or that at least 5 districts had no less than

10 percent of their cropped area planted to them in 2003-4. These 18 crops, listed in Table

2 in descending order of planted area, comprise some 92 percent of area devoted to field

20Since sugarcane is sold mostly to mills and not in wholesale markets, I use the national MSP or, when
relevant, “State Advised Prices,” which tend to be much higher and, hence, closer to international cane
pricing standards (see Gulati, 2012).
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crops in 2003-04 in the major states of India. Table 2 also reports national average log-price

changes (weighted by the state share of total production) relative to rice. Thus, in the first

row, the relative price change for rice is zero, quite negative for several important crops (e.g.,

cotton, gram, groundnut, mustard/rapeseed) and highly positive for pulses (Urad, Moong,

and Arhar).

3.3 Wages

Wage data are derived from the NSS Employment-Unemployment Survey (EUS), normally

conducted every five years. The most recent round, the 66th, collected in 2009-10, is the

first conducted in the wake of the food price “crisis” of 2007-08, whereas the 61st round of

2004-05 most closely preceded it. Once again, in the spirit of the theoretical model, I focus

on manual labor, which constitutes nearly 83 percent of days of paid employment in rural

areas.21 The first-stage of the estimation takes individual log daily wages in the last week and

regresses them on district fixed effects as well as a quadratic in age interacted with gender.

Thus, I estimate the respective log-wage district fixed effects, wd,09 and wd,04, separately for

each round, removing, via the constant terms, year effects due to, e.g., general inflation.

Estimates of the standard errors of the fixed effects σ(wd,09) and σ(wd,04), which I use below

to construct regression weights, are obtained following the procedure of Haisken-DeNew and

Schmidt (1997).

3.4 Identification

Rewriting equation (6) to reflect the price data discussed above, I wish to estimate

21The NSS-EUS categorizes jobs in terms of manual and non-manual labor only for rural, not urban,
workers. Based on the 61st round sample of nearly 39,000 individuals, the population-weighted proportions in
each category are as follows: 58% in manual-agricultural; 24% in manual nonagricultural; 18% in nonmanual
(virtually all in nonagriculture). For the 66th round sample of some 30,000 individuals, the corresponding
proportions are 51%, 30%, and 19%, respectively.
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∆wd/ψd = c+ γ
∑
j

sd,j∆pSTATEd,j + εd. (7)

where STATEd denotes the state in which district d is located. There are two endogene-

ity issues to contend with: measurement error and simultaneity between wage and price

changes.

As to the first issue, both the crop value shares, sd,j, and the crop-specific log-price

changes, ∆pSTATEd,j, may be measured with error. Putting aside the latter concern mo-

mentarily and assuming that measurement error is confined solely to value shares, I could

deploy the instrument

IV 1d =
∑
j

ad,j∆pSTATEd,j (8)

where ad,j is the area share of crop j in district d. To be sure, cropped areas may also be

measured with error, but these errors should not be correlated with those of crop production

and prices.

Clearly, IV 1d does not deal with measurement error in price changes, which could arise

if, e.g., the marketed varieties or grades of a certain crop in a certain state change over time.

Another concern is unobserved district-level shocks (or trends) correlated with both wage

and price changes. For instance, suppose that a particular district has been industrializing

relatively rapidly over the 2004-09 period, or that it has experienced comparatively rapid

technological improvement in agriculture. Both types of shocks would tend to raise district

wages. And, they may influence crop prices as well insofar as the state’s agricultural markets

are insulated from the rest of India (and the world) and the district is important relative to

that market, or the shocks are strongly spatially correlated.

The next step, therefore, is to develop an instrument that is uncorrelated both with

district-level wage shocks and with measurement error in price changes (and crop value

shares). Consider, then,
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IV 2d =
∑
j

ad,j∆pSTATEd,j
(9)

where ∆pSTATEd,j
is the production share weighted mean change in the log-price of crop j

across states excluding the state to which district d belongs.22 In other words, IV 2d replaces

the state price changes in IV 1d with a national average price change uncontaminated by

state-specific shocks or measurement error because no price data from that state or produc-

tion data from that district are used in its construction. The idea, then, is that ∆pSTATEd,j

reflects exogenous international price changes transmitted to other states of India as well as

shifts in demand and supply in the vast domestic market outside of the particular state.

A problem with IV 2d, however, is that it does not meet the exclusion restriction if the

εd are correlated across state boundaries. In other words, if industrialization or agricultural

innovation (or even weather) in, say, southern Andhra Pradesh and northern Tamil Nadu

move together, then the ∆pSTATEd,j
for a district in Andhra Pradesh may reflect these

shocks inasmuch as price changes from Tamil Nadu contribute to the weighted average.

To deal with this concern, I first establish some notation: Let BSTATEr
d be the set of

states within a radius of r kilometers around district d; of course, STATEd ⊆ BSTATEr
d.

Thus, BSTATEr
d for the district in southern Andhra Pradesh, depending on r, may include

Karnataka and Tamil Nadu (in addition to AP itself), whereas, if d were instead in northern

AP, BSTATEr
d might include Maharashtra and Chhattisgarh. With this definition, my

instrument becomes

IV 3r
d =

∑
j

ad,j∆pBSTATEr
d ,j

(10)

where ∆pBSTATEr
d ,j

is the production share weighted mean change in the log-price of crop

j across states excluding those in BSTATEr
d. Here, again, the logic is that the price

22To be precise, ∆pSTATEd,j
=

∑
k∈STATEC

d
ωkj∆pk,j , where STATECd is the set of states excluding

STATEd and ωkj is state k’s share of total production of crop j among all states in STATECd .
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instrument should not directly, or, in this case, even indirectly, be driven by local shocks

that also determine differential wage growth across districts (and states).

The choice of r, the radius of “influence” of local wage shocks on prices in bordering

states may seem arbitrary. Since, on average, districts are 57 kilometers apart (centroid-to-

centroid), at r = 100 kilometers, the sets BSTATEr
d and STATEd differ only for districts

relatively close to their state’s border with another Indian state. Indeed, IV 3100
d = IV 2d

for half of the 462 districts in my estimation sample (those in the deep interior of states or

along the coasts or international borders). By contrast, IV 3200
d = IV 2d for fewer than 10

percent of sample districts. This suggests a strategy of comparing alternative estimates of

γ from equation (7) based on IV 3r
d with successively higher values of r to determine at what

point increasing the radius of influence ceases to matter.

Finally, as equation (10) makes evident, differences in price trends across crops is key to

identification; if the ∆pBSTATEr
d ,j

are the same for all j, then IV 3r
d collapses to ∆pBSTATEr

d
,

essentially a constant. Given the inclusion of the constant term c, γ is virtually nonidentified

in this scenario. Equally as important is variation in crop composition across districts (see

Table 2). If ad,j = aj for all d, then even if the ∆pBSTATEr
d ,j

are not all equal, IV 3r
d again

essentially collapses to a constant. The adjusted R2s of the first-stage regressions using

IV 1d, IV 2d,IV 3100
d , and IV 3200

d are, respectively, 0.788, 0.121, 0.103, and 0.091.23

3.5 Inference

As already alluded to, the error term εd is likely to be correlated across neighboring districts,

if only because geographically proximate regions experience similar productivity shocks over

time. I use a nonparametric covariance matrix estimator or spatial HAC (Conley, 1999) to

account for heteroskedasticity and spatial dependence. A familiar alternative to the spatial

HAC is the clustered covariance estimator. But clustering standard errors by state or region

23Appendix Figure C.1 illustrates the considerable variation in
∑
j sd,j∆pSTATEd,j across the 462 sample

districts (CV = 0.130), the obviously more limited variation in IV 3200d (CV = 0.073), and the regression of
the former variable on the latter–i.e., my first-stage.
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assumes independence of errors across state or regional boundaries, a serious lacuna given

the large fraction of districts bordering an adjacent state.24

Bester et al. (2011) show that the asymptotic normal distribution, typically used to

obtain critical values for inference in HAC estimation, is a poor approximation in finite

samples. I thus follow their suggestion of bootstrapping the distribution of the relevant

test-statistics. For this reason, inference should be guided by p-values rather than standard

errors alone, although I will follow convention and report both. In particular, bootstrapped

p-values are much less sensitive than standard errors to choice of the tuning or bandwidth

parameter (i.e., the degree of kernel smoothing).25

Both numerator, ∆wd = wd,09 − wd,04, and denominator, ψd, of the dependent variable

in equation (7) are district-level summary statistics derived from micro-data. This gives rise

to a particular form of heteroskedasticity and renders least-squares estimation inefficient.

The standard solution is to use weighted least-squares, taking the inverse of the estimated

sampling variances as weights. While the sampling variance of ∆wd is σ2(wd,09)+ σ2(wd,04)

(see above), there is no equally straightforward ‘plug-in’ estimate of the sampling variance

of ψd. I, therefore, bootstrap this variance as well by drawing 1000 random samples of

individuals from each district’s original sample and computing ψd repeatedly. From these

two components, then, I obtain the sampling variance of ∆wd/ψd using the delta-method.26

3.6 Estimation results

Estimates of γ based on equation (7) are reported in Table 2, panel(a), in which identifying

assumptions become progressively less restrictive across columns. Thus, column 1 estimates

24Also note that with only a single (five-year difference) observation per district, serial correlation is not
an issue in my set-up.

25Bandwidth here is the distance cutoff, in degrees of lat/long, beyond which spatial dependence is assumed
to die out. Based on simulation evidence from Bester et al. (2011), I choose a bandwidth of 16; i.e., given
the area of my ‘sampling region’ (the 18 major states of India), this choice should yield minimal test-size
distortion across a range of possible spatial correlations. I find these p-values to be highly robust to
bandwidth deviations of at least ±4.

26Although this procedure ignores correlation between numerator and denominator arising from the fact
that these two statistics are calculated from partially overlapping samples of the same underlying micro-data,
it should serve adequately as a first approximation.
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are by ordinary (weighted) least squares, column 2 uses IV 1d as an instrument, column 3

uses IV 2d, column 4 uses IV 3100
d , and column 5 uses IV 3200

d . Instrument diagnostics are

problematic given the spatial error structure discussed above. However, for lack of a better

alternative, I report Cragg-Donald F -stats, which assume i.i.d. errors, in Table 2 for all

IV regressions. The critical value for the associated weak instrument test, based on 10%

maximal size for a 5% Wald test, is 16.4 in all cases (Stock and Yogo, 2002). Hence, subject

to the caveat already noted, I can strongly reject weak identification, even using IV 3200
d .

While a comparison of the first two columns suggests that measurement error in crop

shares leads to a modicum of attenuation bias, even the column 2 estimate is well below unity

as indicated by the p-values from the bootstrapped-based t-test of H0 : γ = 1.27 Relaxing

the assumption of no measurement error or simultaneity bias in price changes in columns 3-5

delivers a γ̂ much closer to unity, albeit one much less precisely estimated. The specifications

in columns 4 and 5, however, which allow shocks to be correlated across state borders, do

not give much different results from that of column 3, which ignores such correlation. The

pattern of coefficients across columns suggests a rough balance between measurement error

in prices (attenuation bias) and simultaneity bias.

None of the p-values for H0 : γ = 1 in columns 3-5 are anywhere near rejection levels,

evidence in favor of the specific-factors model. To assess power, I use the bootstrapped

t-distribution to answer the question: How likely would I have been to reject H0 : γ = 1

had the true γ been at or very near zero? Based on this empirical power functions, at a true

γ of zero, H0 : γ = 1 would be rejected with 95% certainty in the column 3 specification,

and with closer to 90% certainty in the column 5 specification. In this sense, then, power is

reasonably good: The evidence does not support the view that rural wages are unresponsive

to agricultural price changes over a half-decade period.

27The p-value is the proportion of times the bootstrapped, re-centered, t-statistic of Bester et al. (2011)
exceeds the conventional t-statistic for the null in question computed for the original sample. I use 10,000
bootstrap replications.
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3.7 Robustness: NREGA

India’s National Employment Rural Guarantee Act (NREGA) is meant to provide every rural

household with 100 days of manual labor at a state-level minimum wage, which is typically

above the market wage. Imbert and Papp (2012), using NSS-EUS data and exploiting

the gradual phase-in of the program since 2006, find that NREGA increased overall public

works employment while (modestly) raising private-sector wages in rural India. Since these

labor market changes were contemporaneous with rising food prices, they are worth taking

seriously as possible confounding factors. Given my estimation strategy, however, NREGA

will only affect the results insofar as the local expansion of the program was systematically

related to the (instrumented) change in the agricultural price index.

Based on 7-day employment recall information in the NSS-EUS, I compute the population

weighted district average days spent in public works employment (both NREGA and other)

for rounds 61 and 66.28 Including the 2004-09 change in this public works employment

variable (∆PW ) in regression (7) results in no appreciable changes in my estimates of γ

(compare cols. 5 and 6 of Table 2). Of course, the coefficient on ∆PW does not necessarily

reflect the causal impact of NREGA or any other public works employment program in India

on rural wages; this specification merely serves as a robustness check.

3.8 Sectoral labor mobility

My framework assumes perfect mobility of labor across production sectors over the relevant

horizon. However, as noted above, Topalova (2010) proposes an alternative specific-factors

model to rationalize her empirical results for India in which labor is perfectly immobile, but

capital moves freely, across sectors. It is easy to see that, in this set-up, agricultural wages

respond positively to an increase in food prices but nonagricultural wages respond negatively,

as capital is reallocated away from the sector whose terms of trade has deteriorated and

28This is essentially the same variable considered by Imbert and Papp (2012). In 2004-05, public-works
employment accounted for just 0.22% of a day of work on average, increasing to a still minuscule 1.44% of
a day in 2009-10. Note, however, that NREGA employment is concentrated in the agricultural off-season.
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towards agriculture.

To test perfect intersectoral mobility of labor, I use the same procedure just employed

to construct log-wage district fixed effects for the 2004-05 and 2009-10 NSS-EUS rounds,

except in this case using only wage data for nonagricultural jobs. The dependent variable

is again the time difference of these district fixed effects scaled by ψd. Relative to the

previous analysis, 17 districts are dropped for lack of data on nonagricultural wage jobs. The

estimates, in panel (b) of Table 2, differ little from their counterparts in panel (a), nor can

I reject H0 : γ = 1 in the specifications with the least restrictive identifying assumptions.

Hence, it appears that nonagricultural wages, contra Topalova’s implication, respond as

positively to higher food prices as do wages overall. Consequently, the resulting welfare

gains accruing to manual laborers (through wages) should not depend on the sector in which

they happen to be employed.

4 Food Prices and Welfare

4.1 Welfare elasticities

Now consider a rural household embedded within the economy sketched out in Section 2.

Its contribution to aggregate income consists of value-added from its enterprises, both farm

and nonfarm, its net earnings from manual labor, and its exogenous income E. The second

of these components, which I will denote by W (LS − LD), is not present in equation (3)

because manual labor supply (LS) and demand (LD) are equal in the aggregate.

Household indirect utility is a function of income and prices, PM , PS, and Pj, j = 1, ..., c.

Following the conventional derivation, the proportional change in money-metric utility m is

m̂ =
∑
j

(Ωsj − νj)P̂j (11)

where Ω = λA + (λS − νS)δ + λLψ.
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and υj is the expenditure share of good j (S in the case of services), λA = PAYA

y
is the ratio of

gross farm revenue to income, λS = PSYS

y
is the ratio of gross revenue from service enterprises

to income, and λL = W (LS−LD)
y

is the ratio of the net earnings of manual labor to income. The

term Ωsj − νj is reminiscent of Deaton’s (1989) well-known net consumption ratio (revenue

minus expenditures on crop j divided by total consumption expenditures) except that, unlike

Deaton’s partial equilibrium result, it fully accounts for the changes in factor income induced

by a given price change, as well as for changes in the price of nontradables. There are also

a couple of differences between equation (11) and the compensating variation formula used

by Porto (2006). First, Ω allows not just for changes in labor earnings but for changes

in capital (land) income, which is obviously critical in my setting. Second, whereas the λs

vary by household, as in Porto’s application, the elasticities δ and ψ vary in my case by

the sectoral composition of the district labor market. Moreover, rather than plugging in

reduced-form econometric estimates of these elasticities (which are infeasible), I compute

them based on an empirically validated theoretical model.

In what follows, I consider the distributional consequences of a uniform percentage in-

crease in all agricultural commodity prices relative to the price of manufactures, the nu-

meraire. According to equation (11), the corresponding household welfare elasticity is

simply ε = Ω− νA, where νA is the expenditure share of food crops.

4.2 Distributional analysis

The India Human Development Survey (IHDS) of 2005 is a nationally representative house-

hold survey of both rural and urban India (Desai et al. 2008). Within the 18 major states

already discussed, the IHDS covers nearly 24 thousand rural households spread over 254

districts, collecting information on consumption expenditures and income, including rev-

enues and costs from household enterprises, both agricultural and nonagricultural. Figure 2

shows the patterns of λA and λS smoothed across percentiles of per-capita expenditures, as

represented by the IHDS rural sample. Relative to total household income, gross revenues
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from both farming and service enterprises increase by percentile, though the former increases

much faster. By contrast, because the demand for hired labor across household enterprises

increases with wealth, λL decreases and essentially goes to zero for the highest percentile. On

the consumption side (Figure 3), the behavior of the food share is familiar, falling steadily

and quite rapidly by percentile, whereas the share of expenditures on nontraded goods has

the opposite, though a less steep, distributional gradient.29

Turn now to the main results in Figure 4, showing the relationship between the welfare

elasticity with respect to food prices, ε, and per capita expenditure percentile. Observe that

ε is positive across the income spectrum, never falling below 0.4. Thus, higher food prices

confer substantial and broad-based benefits to the rural population of India, although the

pattern of proportional welfare gains is mildly hump-shaped, with the poorest and richest

households gaining least. This latter feature is driven by changes in non-traded goods prices

and the relatively large share of expenditures devoted to these goods by the rich. In other

words, if δ is artificially set to zero, then ε would be essentially flat across the top per capita

expenditure quintile.30

Finally, let us compare the general equilibrium welfare analysis to a more conventional

partial equilibrium one. Of course, the latter assumes that ψ = δ = 0 so that, from equation

(11), Ω = λA. The distribution of partial equilibrium welfare elasticities looks dramatically

different than that of ε (Figure 4). Without the large and beneficial adjustment in rural

wages, the poorest rural households in India would experience a welfare loss of around

0.2 percent for a 1 percent uniform increase in agricultural prices. However, the relative

advantage of the general equilibrium scenario erodes rapidly with income as manual labor

earnings become progressively less important in the higher percentiles. Indeed, because in

partial equilibrium, the richest households do not have to pay higher prices for services or

29Nontraded goods expenditure categories include: firewood, entertainment, conveyance, house rental,
repair and maintenance, medical care, education, and other services.

30In Jacoby (2013), I further account for India’s vast Public Distribution System (PDS), under which
eligible households (generally, those below the poverty line) can purchase fixed rations of either rice, wheat,
or sugar in “Fair Price Shops” at below-market prices. If I assume that PDS prices remain stable even as
market prices rise, I obtain modestly better welfare outcomes for all but the top two deciles.
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higher wages to hired labor, they would benefit even more than in general equilibrium from

higher food prices.

5 Conclusions

In reaction to the food price spike of 2007-08, the Government of India imposed export bans

on certain major crops. Such efforts to restrain consumer prices can have the unfortunate

side-effect of restraining producer prices as well. My analysis shows that, in the face of

higher agricultural commodity prices, a stand-alone export ban, or any policy that mimics

its effects, would reduce welfare for the vast bulk of India’s population. Moreover, it is

precisely the poorest rural households (and, hence, the poorest in India as a whole) that

are most harmed by forestalling, or at least delaying, the substantial trickle-down effects of

higher crop prices via rural wages.

Partial equilibrium analysis, which assumes fixed wages, provides a highly misleading

picture of the distributional impacts of food price shocks among India’s vast rural population.

To be sure, the story may be quite different in metropolitan India, where the poor, arguably,

benefit little from rising rural wages.31 Even though not much more than a quarter of India’s

population resides in cities, urban constituencies are obviously more concentrated than rural

ones and, hence, from a political-economy standpoint, are likely to be more pivotal in shaping

government policy on such matters as food security.

Finally, this paper speaks to the broader debate on the link between trade and poverty.

Consistent with the WTO’s Doha agenda, my results imply that lowering barriers to trade

in agricultural goods on the part of developed countries, if only by improving the lot of the

rural poor in India, can make a significant dent in global poverty.

31A full analysis of rural-urban labor market linkages is beyond the scope the present paper, but is an
important topic for future research.
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Table 1: Summary Statistics for Major Crops

Area Share Value Share No. of Districts ∆pj −∆price

Rice 0.380 0.408 447 0.000
(0.320) (0.328)

Wheat 0.225 0.199 390 -0.032
(0.183) (0.165)

Soyabean 0.092 0.099 153 0.056
(0.151) (0.159)

Bajra 0.076 0.037 287 -0.064
(0.146) (0.091)

Cotton 0.076 0.128 206 -0.130
(0.112) (0.175)

Maize 0.067 0.054 410 -0.011
(0.112) (0.103)

Jowar 0.065 0.024 317 -0.041
(0.110) (0.040)

Ragi 0.052 0.030 192 0.052
(0.123) (0.092)

Groundnut 0.046 0.050 349 -0.112
(0.115) (0.115)

Gram 0.043 0.045 385 -0.195
(0.072) (0.087)

Sugarcane 0.035 0.090 386 0.001
(0.082) (0.164)

Rapeseed/Mustard 0.034 0.038 367 -0.199
(0.073) (0.090)

Urad 0.028 0.012 409 0.364
(0.042) (0.018)

Moong 0.025 0.014 424 0.586
(0.041) (0.030)

Arhar 0.021 0.019 428 0.253
(0.033) (0.033)

Potato 0.019 0.053 312 -0.146
(0.061) (0.105)

Sunflower 0.014 0.009 271 -0.083
(0.048) (0.032)

Sesamum 0.012 0.008 387 0.053
(0.022) (0.022)

Notes: Means (standard deviations) of district-level data and number of districts growing each crop in

2003-04. Log-price changes for 2004-09 are averages across the 18 major states of India weighted by

state production shares.
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Table 2: Rural Wage Impacts of Crop Price Changes: 2004-09

(1) (2) (3) (4) (5) (6)

(a) Wages for all manual labor (N = 462)

γ 0.429 0.547 0.864 0.822 0.847 0.846
(0.100) (0.105) (0.305) (0.302) (0.318) (0.320)

∆ PWa 0.042
(0.215)

p-values:
H0 : γ = 1 0.000 0.014 0.672 0.579 0.660 0.663
H0 : γ = 0 0.000 0.001 0.006 0.009 0.014 0.018

Cragg-Donald F -stat 1384.1 61.0 50.0 39.0 38.5
(weak identification test)

(b) Wages for nonagricultural manual labor (N = 445)

γ 0.672 0.779 0.988 0.844 0.900 0.851
(0.109) (0.104) (0.263) (0.245) (0.249) (0.250)

∆ PWa -0.228
(0.242)

p-values:
H0 : γ = 1 0.010 0.461 0.969 0.585 0.733 0.613
H0 : γ = 0 0.000 0.000 0.004 0.008 0.006 0.010

Cragg-Donald F -stat 1522.6 73.1 59.0 48.2 49.8
(weak identification test)

Instrument — IV 1d IV 2d IV 3100
d IV 3200

d IV 3200
d

Notes: Standard errors robust to spatial dependence in parentheses. All p-values based on

Bester et al. (2011) bootstrapped critical values (R = 10000). Dependent variable is the change

in log wage district fixed effect between 2004-09 scaled by the district wage-price elasticity. All

regressions include a constant term and are weighted by the inverse estimated sampling variance

of the dependent variable. See text for definition of instruments.

aDifference in average days of public works employment per week in district between 2004-09.
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Appendix

A Model Solution

I assume Cobb-Douglas production functions with input cost shares αLi + αIi + αKi = 1 in

each sector i = A,M, S . The first step is to solve the following system of four equations

αLAŴ + αKAΠ̂A = P̂A (A.1)

αLMŴ + αKM Π̂M = 0

αLSŴ + αKSΠ̂S = P̂S

βAΠ̂A + βM Π̂M + βSΠ̂S = Ŵ

for Ŵ and the Π̂i (recall, P̂M = P̂I = 0 by assumption). The first three equations are the

sectoral price-equals-unit-cost conditions, whereas the last equation is derived from the labor

constraint (which implies
∑

i βiL̂i = 0) and the fact that L̂i = Π̂i − Ŵ in the Cobb-Douglas

case.

The solution for the wage-price elasticity is

Ŵ/P̂A = (βA/αKA + βSδ/αKS)/D, (A.2)

where D = 1 +
∑

i βiαLi/αKi. In the case of equal input cost shares across sectors, D =

1 + αL/αK and equation (A.2) reduces to equation (5) in the text.

Solving for the elasticity of the services sector price with respect to the agricultural

sector price, δ, involves equating changes in service sector supply ŶS and demand X̂S. If

the Marshallian demand function for services takes the form XS = y/PS (i.e., Cobb-Douglas

preferences), then

X̂S = ŷ − P̂S (A.3)

= (1− E/y)(ωAP̂A + ωSP̂S)− P̂S

where ωj = (1 + αKj/αLj)βj/(1 +
∑

i βiαKi/αLi).

On the supply-side, from the services production function and the specificity of capital,

we have

ŶS = αLSL̂S + αIS ÎS. (A.4)
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Meanwhile, the condition that input prices equal respective marginal value products delivers

Ŵ = P̂S + F̂LS
= P̂S − L̂S + ŶS and P̂S = −F̂IS = ÎS − ŶS, where the second equality in

each case follows from the total differentiation of the marginal product functions FLS
and

FIS . Solving these two equations, after first substituting out ÎS from the second using (A.4),

yields

ŶS =
αLS + αIS

αKS

P̂S −
αLS

αKS

Ŵ . (A.5)

Substituting equation (A.2) into (A.5), equating the result to (A.3), and solving gives

δ =
αKS(1− E/y)ωAD + αLSβA/αKA

D(1− αKS(1− E/y)ωS)− αLSβS/αKS

(A.6)

With equal input cost shares, equation (A.6) simplifies to δ = RβA/(αK + αL−RβS) where

R = αL + αK(αK + αL)(1− E/y). Finally, as mentioned in the text, E = 0 and αI = 0⇒
R = 1⇒ δ = βA/(1− βS).

B Parameters computed from NSS data

B.1 Input cost shares in agriculture

The 59th round of the National Sample Survey (NSS59) collected nationally representative

farm household data in 2002-03, including information on agricultural inputs and outputs

for over 40 thousand farms. The labor cost share is αL = W (`h + `f )/
∑

j PjYj, where `h and

`f are, respectively, hired and family labor in agriculture and the denominator is the value of

crop production. We may write the numerator as W`h(1 + f), where f = `f/`h is the ratio

of family to hired labor. For a labor market in equilibrium, f should equal the ratio of the

number of agricultural laborers working on their own farm to the number working for wages

on other farms. Thus, we can calculate f for each of the five regions (north, northwest,

center, east, and south) from individual employment data in NSS61-EUS. Comparable data

on hired labor expenses (for regular and casual farm workers), W`h, and on total value of crop

production are available at the farm-level by season from NSS59. Summing up W`h across

seasons and households within each region (using sampling weights) multiplying by (1 + f)

and dividing by a similarly computed sum of production value gives the regional labor shares.

I use the same approach for the intermediate input shares αI = PIIA/
∑

j PjYj, where the

numerator is the total expenditures on non-labor variable inputs as reported in NSS59 (seed,

fertilizer, pesticide, and irrigation). The results of these calculations are as follows:
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North Northwest Center East South

αL 0.331 0.304 0.258 0.317 0.260

αI 0.264 0.325 0.258 0.250 0.238

B.2 Sectoral labor shares

Despite being a so-called ‘thin’ round, NSS64, collected in 2007-08, fielded the standard

Employment-Unemployment Survey questionnaire on a ‘thick’-round sample of nearly 80

thousand rural households. I use these data to compute district-level sectoral labor shares

at roughly the mid-point between 2004-05 and 2009-10. Since the survey was carried out

throughout the whole year in most districts, agricultural labor seasonality is not a major

issue at the district level. For each individual, I compute the total manual labor days in

the last week in both agricultural and nonagricultural jobs, apportioning the latter (based

on industry codes) between services and manufacturing sectors. I then take a population-

weighted sum of days across individuals in each district to get total district labor days (per

week) by sector, Dd,m, m = MA (manual ag. labor), MNA (manual nonag. labor), and

MNAS (manual nonag. labor in services).

There is a persistent daily wage gap between agriculture and nonagriculture, present

across all NSS-EUS rounds, which suggests that days spent in agriculture are substantially

less productive than those spent in nonagriculture. In particular, an agricultural sector

dummy included in a log-wage regression using the NSS64 rural sample attracts a coefficient

of -0.243, after controlling flexibly for gender, age, education, and district. Thus, labor pro-

ductivity is around 24 percent lower per day in agriculture. To account for this productivity

difference, I incorporate an efficiency units assumption into the model. In other words, the

labor constraint becomes L = L′A + LM + LS, where L′A = LAe
−0.243. The district-level

sectoral labor shares, in efficiency units, can hence be calculated using

βd,A =
e−0.243Dd,MA

e−0.243Dd,MA +Dd,MNA

and βd,S =
Dd,MNAS

e−0.243Dd,MA +Dd,MNA

.

C Additional tables and figures (ON-LINE ANNEX)
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Table C.1: Summary Statistics for Major States of India

Annual PC Expend. ψ βA βS βM No. of districts

North:

Haryana 4.559 1.177 0.785 0.142 0.073 19
(0.817) (0.136) (0.138) (0.111) (0.081)

Himachal Pradesh 4.094 1.161 0.772 0.165 0.063 12
(0.551) (0.112) (0.120) (0.095) (0.049)

Punjab 4.535 1.145 0.731 0.203 0.067 17
(0.891) (1.145) (0.160) (0.135) (0.041)

Uttaranchal 3.296 1.177 0.761 0.187 0.052 13
(0.474) (0.163) (0.180) (0.147) (0.058)

Uttar Pradesh 3.108 1.182 0.781 0.149 0.070 70
(0.596) (0.127) (0.124) (0.090) (0.068)

Northwest:

Gujarat 3.136 1.316 0.835 0.088 0.078 25
(0.579) (0.169) (0.136) (0.084) (0.093)

Rajasthan 3.317 1.266 0.758 0.168 0.075 31
(0.503) (0.103) (0.091) (0.073) (0.057)

Center:

Chattisgarh 2.244 1.253 0.870 0.092 0.038 13
(0.481) (0.085) (0.113) (0.093) (0.041)

Madhya Pradesh 2.489 1.249 0.860 0.104 0.035 45
(0.608) (0.092) (0.117) (0.103) (0.050)

Maharashtra 2.752 1.204 0.825 0.118 0.057 33
(0.558) (0.137) (0.120) (0.071) (0.058)

Orissa 1.964 1.131 0.759 0.151 0.090 30
(0.557) (0.135) (0.137) (0.114) (0.076)

East:

Bihar 2.408 1.183 0.802 0.142 0.055 37
(0.391) (0.155) (0.167) (0.126) (0.068)

Jharkhand 2.257 1.040 0.697 0.210 0.093 18
(0.441) (0.282) (0.243) (0.210) (0.073)

West Bengal 2.667 0.951 0.603 0.223 0.174 17
(0.363) (0.189) (0.139) (0.075) (0.113)

South:

Andhra Pradesh 2.486 1.073 0.717 0.174 0.109 22
(0.308) (0.081) (0.090) (0.099) (0.052)

Karnataka 2.595 1.159 0.828 0.094 0.078 27
(0.593) (0.208) (0.176) (0.081) (0.117)

Kerala 4.355 0.686 0.370 0.458 0.172 14
(0.877) (0.289) (0.223) (0.172) (0.096)

Tamil Nadu 2.386 0.891 0.588 0.225 0.187 29
(0.369) (0.228) (0.174) (0.114) (0.139)

Notes: Means (standard deviations) of district-level data. Annual per capita expenditures are in thou-
sands of 2004 Rupees.
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Figure C.1: Change in Crop Price Index and First-stage with IV 3200
d
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